IV Year - II Semester

MACHINE LEARNING

OBJECTIVES:
e Familiarity with a set of well-known supervised, unsupervised and semi-supervised
® learning algorithms.
¢ The ability to implement some basic machine learning algorithms
¢ Understanding of how machine learning algorithms are evaluated

UNIT -I:The ingredients of machine learning, Tasks: the problems that can be solved with
machine learning, Models: the output of machine learning, Features, the workhorses of machine
learning. Binary classification and related tasks: Classification, Scoring and ranking, Class
probability estimation

UNIT- II:Beyond binary classification:Handling more than two classes, Regression,
Unsupervised and descriptive learning. Concept learning: The hypothesis space, Paths through
the hypothesis space, Beyond conjunctive concepts

UNIT- III: Tree models: Decision trees, Ranking and probability estimation trees, Tree learning
as variance reduction. Rule models:Learning ordered rule lists, Learning unordered rule sets,
Descriptive rule learning, First-order rule learning

UNIT -IV:Linear models: The least-squares method, The perceptron: a heuristic learning
algorithm for linear classifiers, Support vector machines, obtaining probabilities from linear
classifiers, Going beyond linearity with kernel methods.Distance Based Models: Introduction,
Neighbours and exemplars, Nearest Neighbours classification, Distance Based Clustering,
Hierarchical Clustering.

UNIT- V:Probabilistic models: The normal distribution and its geometric interpretations,
Probabilistic models for categorical data, Discriminative learning by optimising conditional
likelihoodProbabilistic models with hidden variables.Features: Kinds of feature, Feature
transformations, Feature construction and selection. Model ensembles: Bagging and random
forests, Boosting

UNIT- VI: Dimensionality Reduction: Principal Component Analysis (PCA), Implementation
and demonstration. Artificial Neural Networks:Introduction, Neural network representation,
appropriate problems for neural network learning, Multilayer networks and the back propagation
algorithm.



OUTCOMES:
e Recognize the characteristics of machine learning that make it useful to real-world
Problems.
Characterize machine learning algorithms as supervised, semi-supervised, and
Unsupervised.
Have heard of a few machine learning toolboxes.
Be able to use support vector machines.
Be able to use regularized regression algorithms.
Understand the concept behind neural networks for learning non-linear functions.

TEXT BOOKS:
1. Machine Learning: The art and science of algorithms that make sense of data, Peter Flach,

Cambridge.
2. Machine Learning, Tom M. Mitchell, MGH.

REFERENCE BOOKS:
1. UnderstandingMachine Learning: From Theory toAlgorithms, Shai Shalev-Shwartz, Shai
Ben-
David, Cambridge.
2. Machine Learning in Action, Peter Harington, 2012, Cengage.



MACHINE LEARNING

UNIT -1:The ingredients of machine learning, Tasks: the problems that can be solved with Machine learning,
Models: the output of machine learning, Features, the workhorses of machine learning.
Binary classification and related tasks: Classification, Scoring and ranking, Class probability estimation

A)Machine Learning

Machine Learning is the field of study that gives computers the capability to learn without being
explicitly programmed. ML is one of the most exciting technologies that one would have ever come
across. As it is evident from the name, it gives the computer that which makes it more similar to
humans: The ability to learn. Machine learning is actively being used today, perhaps in many more
places than one would expect

LIHEPROBLEMO THAT CAN BE SOLVED WITH MACHINE LEARNING:

The most common machine learning tasks are predictive, in the sense that they concern predicting a target variable
from features.

Binary and multi-class classification: categorical target

Regression: numerical target

Clustering: hidden target

Descriptive tasks are concerned with exploiting underlying structure in the data

8 PROBLEMS SOLVED BY MACHINE LEARNING
»  Manual data entry.

+  Detecting Spam.

v Product recommendation.

+  Medical Diagnosis.

v Customer segmentation and Lifetime value prediction.
v+ Financial analysis.

v Predictive maintenance.

v Image recognition (Computer Vision).

1. MANUAL DATA ENTRY
Inaccuracy and duplication of data are major business problems for an organization wanting to automate its

processes. Machines learning (ML) algorithms and predictive modelling algorithms can significantly improve the
situation. ML programs use the discovered data to improve the process as more calculations are made. Thus
machines can learn to perform time-intensive documentation and data entry tasks. Also, knowledge workers can
now spend more time on higher-value problem-solving tasks. Arria, an Al based firm has developed a natural
language processing technology which scans texts and determines the relationship between concepts to write

reports.
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2. DETECTING SPAM
Spam detection is the earliest problem solved by ML. Four years ago, email service providers used pre-existing

rule-based techniques to remove spam. But now the spam filters create new rules themselves using ML. Thanks to
‘neural networks’ in its spam filters, Google now boasts of 0.1 percent of spam rate. Brain-like “neural networks”
in its spam filters can learn to recognize junk mail and phishing messages by analyzing rules across an enormous
collection of computers. In addition to spam detection, social media websites are using ML as a way to identify
and filter abuse.

3. PRODUCT RECOMMENDATION
Unsupervised learning enables a product based recommendation system. Given a purchase history for a customer

and a large inventory of products, ML models can identify those products in which that customer will be interested
and likely to purchase. The algorithm identifies hidden pattern among items and focuses on grouping similar
products into clusters. A model of this decision process would allow a program to make recommendations to a
customer and motivate product purchases. E-Commerce businesses such as Amazon has this capability.
Unsupervised learning along with location detail is used by Facebook to recommend users to connect with others
users.

4. MEDICAL DIAGNOSIS
Machine Learning in the medical field will improve patient’s health with minimum costs. Use cases of ML are

making near perfect diagnoses, recommend best medicines, predict readmissions and identify high-risk patients.
These predictions are based on the dataset of anonymized patient records and symptoms exhibited by a patient.
Adoption of ML is happening at a rapid pace despite many hurdles, which can be overcome by practitioners and
consultants who know the legal, technical, and medical obstacles.

5. CUSTOMER SEGMENTATION AND LIFETIME VALUE PREDICTION
Customer segmentation, churn prediction and customer lifetime value (LTV) prediction are the main challenges

faced by any marketer. Businesses have a huge amount of marketing relevant data from various sources such as
email campaign, website visitors and lead data. Using data mining and machine learning, an accurate prediction
for individual marketing offers and incentives can be achieved. Using ML, savvy marketers can eliminate
guesswork involved in data-driven marketing. For example, given the pattern of behavior by a user during a trial
period and the past behaviors of all users, identifying chances of conversion to paid version can be predicted. A
model of this decision problem would allow a program to trigger customer interventions to persuade the customer

to convert early or better engage in the trial.

6. FINANCIAL ANALYSIS
Due to large volume of data, quantitative nature and accurate historical data, machine learning can be used in

financial analysis. Present use cases of ML in finance includes algorithmic trading, portfolio management, fraud
detection and loan underwriting. According to Ernst and Young report on ‘The future of underwriting” — Machine

learning will enable continual assessments of data for detection and analysis of anomalies and nuances to improve
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the precision of models and rules. And machines will replace a large no. of underwriting positions. Future
applications of ML in finance include_chatbots and conversational interfaces for customer service, security and
sentiment analysis.

7. PREDICTIVE MAINTENANCE
Manufacturing industry can use artificial intelligence (Al) and ML to discover meaningful patterns in factory data.

Corrective and preventive maintenance practices are costly and inefficient. Whereas predictive maintenance
minimizes the risk of unexpected failures and reduces the amount of unnecessary preventive maintenance

activities.
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8. IMAGE RECOGNITION (COMPUTER VISION)
Computer vision produces numerical or symbolic information from images and high-dimensional data. It involves

machine learning, data mining, database knowledge discovery and pattern recognition. Potential business uses of
image recognition technology are found in healthcare, automobiles — driverless cars, marketing campaigns, etc.
Baidu has developed a prototype of for visually impaired which incorporates computer vision technology
to capture surrounding and narrate the interpretation through an earpiece. Image recognition based marketing

campaigns such as by L’Oreal drive social sharing and user engagement.
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vGeometric models
2.Probabilistic models
3.Logical models Grouping and grading

Machine learning models can be distinguished according to their main intuition:
Geometric models :use intuitions from geometry such as separating (hyper-)planes, linear transformations

and distance metrics.

Probabilistic models: view learning as a process of reducing uncertainty, modelled by means of
probability distributions.

Logical models are defined in terms of easily interpretable logical expressions.

Alternatively, they can be characterised by their modus operandi:

Grouping models divide the instance space into segments; in each segment a very simple (e.g., constant)

model is learned.

Grading models learning a single, global model over the instance space

1.Geometric models
Basic linear classifier
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The basic linear classifier constructs a decision boundary by half-way intersecting the
line between the positive and negative centres of mass. It is described by the equation

W-X = I, with W= P — 1 ‘the decision threshold can be found by noting that (p+n)/2 is
on the decision boundary, and * = (P — ) - (p + @ /2 = (dIpll® — lInll®)r2,

where ||x|| denotes the length of vector x.

2 Probabilisti el

« A model describes data that one could observe from a system
« If we use the mathematics of probability theory to express all forms of uncertainty and
Noise associated with our model...
* Then inverse probability (i.e. Bayes rule) allows us to infer unknown quantities, adapt our models,

Make predictions and learn from data

Bayes Rule:

P(data|hypothesis) P(hypothesis)

P(hypothesis|data) = P(data)

« Bayes rule tells us how to do inference about hypotheses from data.
« Learning and prediction can be seen as forms of inference.

3.L.ogical models
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Fig:1:4-Feature Tree for Logical models

Labelling a feature tree

(left) A feature tree combining two Boolean features. Each internal node or split is
labelled with a feature, and each edge emanating from a split is labelled with a feature
value. Each leaf therefore corresponds to a unique combination of feature values. Also
indicated in each leaf is the class distribution derived from the training set. (right) A
feature tree partitions the instance space into rectangular regions, one for each leaf. We
can clearly see that the majority of ham lives in the lower left-hand corner.

The leaves of the tree in Figure 1.4 could be labelled, from left to right, as ham — spam — spam,
employing a simple decision rule called majority class.

Alternatively, we could label them with the proportion of spam e-mail occurring in each leaf: from

left to right, 1/3, 2/3, and 4/5.

Or, if our task was a regression task, we could label the leaves with predicted real values or even linear
functions of some other, real-valued features.

A complete feature tree

Consider the following rules:

-if lottery =1 then Class =Y =spam-
-if Peter = 1 then Class =Y = ham-
P |

Mapping machine learning models:

A ‘map’ of some of the models that will be considered in this book. Models that share
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characteristics are plotted closer together: logical models to the right, geometric models
on the top left and probabilistic models on the bottom left. The horizontal dimensiroughly
ranges from grading models on the left to grouping models on the right.

Mapping machine learning model diagram
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A taxonomy describing machine learning methods in terms of the extent to which they
are grading or grouping models, logical, geometric or a combination, and supervised or
unsupervised. The colours indicate the type of model, from left to right: logical (red),

probabilistic (orange) and geometric (purple).

Suppose we have a number of learning models that we want to describe in terms of a number of properties:
—>The extent to which the models are geometric, probabilistic or logical;

—>Whether they are grouping or grading models;

—>The extent to which they can handle discrete and/or real-valued features;

—->Whether they are used in supervised or unsupervised learning; and

—>The extent to which they can handle multi-class problems.

The first two properties could be expressed by discrete features with three and two values, respectively; or if the
distinctions are more gradual, each aspect could be rated on some numerical scale. A simple approach would be to
measure each property on an integer scale from 0 to 3, as in Table 1.4. This table establishes a data set in which

each row represents an instance and each column a feature

Table 1.4. THE MLM DATA SET
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THE MANY USES OF FEATURES:

Suppose we want 1o approximate y = cosax on the interval —1 <= x < 1. A linear
approximation is not much use here. since the best fit would be y = 0. However,
if we split the x-axis in two intervals -1 = x<0and 0= x= 1, we could find
reasonable linear approximations on each interval. We can achieve this by using
X both as a spiitting feature and as a regression variable (Figure 1.9).

A small regression tree

FIG:DIAGRAM FORREGRESSION TREE

V= 2%+1 ¥ = —2x+1 / \

(left) A regression tree combining a one-split feature tree with linear regression models in the leaves. Notice how x

is used as both a splitting feature and a regression variable.
(right) The function y=COSzx on the interval -1<X<+1, and the piecewise linear approximation achieved by the

regression tree.

E re construction and transformation

Class-sensitive discretisation:

(left) Artificial data depicting a histogram of body weight measurements of people with (blue) and without (red)
diabetes, with eleven fixed intervals of 10 kilograms width each. (right) By joining the first and second, third and
fourth, fifth and sixth, and the eighth,ninth and tenth intervals, we obtain a discretisation such that the proportion
of diabetes cases increases from left to right. This discretisation makes the feature more useful in predicting

diabetes.
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B)BINARY CLASSIFICATION AND RELATED TASKS

Binary classification and related tasks are
e Classification
-Assessing classification performance
-Visualising classification performance

e Scoring and ranking
-Assessing and visualising ranking performance
-Tuning rankers
e Class probability estimation
-Assessing class probability estimates

LD CLASSIFICATION

A classifier is a mapping ¢ : & — €, where € = {Cy,(C>,...,Ci} is a finite and
usually small set of class labels. We will sometimes also use C; to indicate the
set of examples of that class.

We use the ‘hat’ to indicate that ¢(x) is an estimate of the true but unknown
function c(x). Examples for a classifier take the form (x, c(x)), where x € &' is
an instance and c(x) is the true class of the instance (sometimes contaminated
by noise).

Learning a classifier involves constructing the function ¢ such that it matches ¢
as closely as possible (and not just on the training set, but ideally on the entire
instance space &').

10
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Decision Tree Diagram For Classification:

E(x) = haum Ex) = spam

(left) A feature tree with training set class distribution in the leaves. (right) A decision tree obtained using the
majority class decision rule.
—>Assessing classification performance

(left) A two-class contingency table or confusion matrix depicting the performance of the decision tree in Figure
2.1. Numbers on the descending diagonal indicate correct predictions, while the ascending diagonal concerns
prediction errors. (right) Acontingency table with the same marginals but independent rows and columns.

Contingency table

Predicted = Predicted =s
Actual & 30 20 50 @ 20 30 50
Actual 10 40 50 20 30 50
40 60 100 40 60 100

—>Visualising classification performance:
Degrees of freedom for above topic

contains 9 values, however some of them depend on others: e.g., marginal sums depend on rows and columns,
respectively. Actually, we need only 4 values to determine the rest of them. Thus, we say that this table has 4
degrees of freedom. In general table having (k A1)2 entries has k2 degrees of freedom.In the following, we

assume that Pos, Neg , TP and FP are enough to reconstruct whole table.

11
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The following contingency table:

Predicted & Predicted

Actual & TP FN Pos
Actual FP TN Neg
0 0 0
2) SCORING AND RANKING

A scoring classifier is a mapping §: & — R, i.e., a mapping from the instance
space to a k-vector of real numbers.

The boldface notation indicates that a scoring classifier outputs a vector

S(x) = (51(x),...,8x(x)) rather than a single number; §;(x) is the score assigned
to class C; for instance x.

This score indicates how likely it is that class label C; applies.

If we only have two classes, it usually suffices to consider the score for only one
of the classes; in that case, we use §(x) to denote the score of the positive class
for instance x.

SCORING TREE

12
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(left) A feature tree with training set class distribution in the leaves.
(right) A scoring tree using the logarithm of the class ratio as scores; spam is taken as the positive class.

- Assessing and visualising ranking performance:
&= By selecting a split point in the ranking we can turn the ranking into a
classification. In this case there are four possibilities:
(A) setting the split point before the first segment, and thus assigning all
segments to the negative class;
(B) assigning the first segment to the positive class, and the other two to

the negative class;
(C) assigning the first two segments to the positive class; and

(D) assigning all segments to the positive class.

The ranking error rate is defined as

Zx(—:Te*,x’eTe'* I[S(x) < §(«“,)] - %1[3‘(-\‘) = §(.\7’)]

Pos- Neg

rank-err =
->Tuning rankers:
You have carefully trained your Bayesian spam filter, and all that remains is setting the decision threshold. You
select a set of six spam and four ham e-mails and collect the scores assigned by the spam filter. Sorted on
decreasing score these are 0.89 (spam), 0.80 (spam), 0.74 (ham), 0.71 (spam), 0.63 (spam), 0.49
(ham), 0.42 (spam), 0.32 (spam), 0.24 (ham), and 0.13 (ham).
3. CLASS PROBABILITY ESTIMATION

A class probability estimator — or probability estimator in short — is a scoring
classifier that outputs probability vectors over classes, i.e., a mapping

p: 2 — [0,11%. We write p(x) = (P1(x), ..., pr(x)), where p;(x) is the
probability assigned to class C; for instance x, and Zle pi(x) = 1.

If we have only two classes, the probability associated with one class is 1 minus
the probability of the other class: in that case, we use p(x) to denote the
estimated probability of the positive class for instance x.

As with scoring classifiers, we usually do not have direct access to the true
probabilities p;(x).

13
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PROBABILTIY ESTIMATION TREE:

p(x)=0.80

p(x)=0.33 D(x)=0.67

A probability estimation tree derived from the feature tree in Figure 1.4.

> Assessing class probability estimates:

It requires mean and squared probability form is
We can define the squared error (SE) of the predicted probability vector

p(x) = (p1(x),..., pr(x)) as

1 k
=31 Z —I[c(x) = C;])®

and the mean squared error (MSE) as the average squared error over all
instances in the test set:

MSE(Te) = Z E(x)

x€ Te

14
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Handling more than two classes
How to evaluate multi-class performance and how to build multi-class models out of binary
models.
—>Multi-class classification
—>Multi-class scores and probabilities
Multi-class classification: multiclass or multinomial classification is the problem of
classifying instances into one of three or more classes. (Classifying instances into one of two
classes is called binary classification.)
The existing multi-class classification techniques can be categorized into
() Transformation to binary
(i) Extension from binary(Multi-class scores and probabilities)
(i) Hierarchical classification.

1. Transformation to binary
This section discusses strategies for reducing the problem of multiclass classification to
multiple binary classification problems. It can be categorized into One vs Rest and One vs
One. The techniques developed based on reducing the multi-class problem into multiple
binary problems can also be called problem transformation techniques.
One-vs.-rest

One-vs.-rest (or one-vs.-all, OvVA or OVR, one-against-all, OAA) strategy involves training a
single classifier per class, with the samples of that class as positive samples and all other
samples as negatives. This strategy requires the base classifiers to produce a real-valued
confidence score for its decision, rather than just a class label; discrete class labels alone can
lead to ambiguities, where multiple classes are predicted for a single sample.

In pseudocode, the training algorithm for an OvA learner constructed from a binary
classification learner L is as follows:

Inputs:

e L, alearner (training algorithm for binary classifiers)

e samples X

o labelsy whereyi € {1, ... K} is the label for the sample X;
Output:

o alist of classifiers fy for k € {1, ..., K}
Procedure:

e Foreachkin{l,...,K}

o Construct a new label vector z where zi=yiifyi=kand z =
otherwise

1
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o ApplyLto X, zto obtain fi

Making decisions means applying all classifiers to an unseen sample x and predicting the
label k for which the corresponding classifier reports the highest confidence score:

Although this strategy is popular, it is a heuristic that suffers from several problems.
Firstly, the scale of the confidence values may differ between the binary classifiers.
Second, even if the class distribution is balanced in the training set, the binary
classification learners see unbalanced distributions because typically the set of
negatives they see is much larger than the set of positives.

One-vs.-one

In the one-vs.-one (OvO) reduction, one trains K (K — 1) / 2 binary classifiers for a K-way
multiclass problem; each receives the samples of a pair of classes from the original training
set, and must learn to distinguish these two classes. At prediction time, a voting scheme is
applied: all K (K — 1) / 2 classifiers are applied to an unseen sample and the class that got the
highest number of "+1" predictions gets predicted by the combined classifier.

Like OVR, OvO suffers from ambiguities in that some regions of its input space may receive
the same number of votes.

2. Multi-c] | probabiliti

Extension from binary This section discusses strategies of extending the existing binary
classifiers to solve multi-class classification problems. Several algorithms have been
developed based on neural networks, decision trees, k-nearest neighbors, naive Bayes,
support vector machines and Extreme Learning Machines to address multi-class classification
problems. These types of techniques can also be called algorithm adaptation techniques.

Neural networks

Multiclass perceptrons provide a natural extension to the multi-class problem. Instead of just
having one neuron in the output layer, with binary output, one could have N binary neurons
leading to multi-class classification. In practice, the last layer of a neural network is usually a
softmax function layer, which is the algebraic simplification of N logistic classifiers,
normalized per class by the sum of the N-1 other logistic classifiers.

Extreme learning machines

Extreme Learning Machines (ELM) is a special case of single hidden layer feed-forward
neural networks (SLFNSs) where in the input weights and the hidden node biases can be
chosen at random. Many variants and developments are made to the ELM for multiclass
classification.

k-nearest neighbours

k-nearest neighbors kNN is considered among the oldest non-parametric classification
algorithms. To classify an unknown example, the distance from that example to every other

2
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training example is measured. The k smallest distances are identified, and the most
represented class by these k nearest neighbours is considered the output class label.

Naive Bayes

Naive Bayes is a successful classifier based upon the principle of maximum a posteriori
(MAP). This approach is naturally extensible to the case of having more than two classes, and
was shown to perform well in spite of the underlying simplifying assumption of conditional
independence.

Decision trees

Decision tree learning is a powerful classification technique. The tree tries to infer a split of
the training data based on the values of the available features to produce a good
generalization. The algorithm can naturally handle binary or multiclass classification
problems. The leaf nodes can refer to either of the K classes concerned.

Support vector machines

Support vector machines are based upon the idea of maximizing the margin i.e. maximizing
the minimum distance from the separating hyperplane to the nearest example. The basic SVM
supports only binary classification, but extensions have been proposed to handle the
multiclass classification case as well. In these extensions, additional parameters and
constraints are added to the optimization problem to handle the separation of the different
classes.

3
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Flgure 3.1. (left) Triples of probabilistic scores represented as points in an equilateral triangle
connecting three corners of the unit cube. (right) The arrows show how the weights are adjusted
from the initial equal weights (dotted lines), first by optimising the separation of Cz against C;
[dashed line}, then by optimising the separation of Cy against the other two classes (solid lines).
The end result is that the weight of C; is considerably decreased, to the benefit of the other two
classes.

wq = 1. Unfortunately, finding a globally optimal weight vector is computationally in-
tractable. A heuristic approach that works well in practice is to first learn w» to opti-
mally separate C> from C; as in the two-class case; then learn w4 to separate C3 from

1o, and so on.

3.Hierarchical classification

Hierarchical classification tackles the multi-class classification problem by dividing the
output space i.e. into a tree. Each parent node is divided into multiple child nodes and the
process is continued until each child node represents only one class. Several methods have
been proposed based on hierarchical classification.

Regression

A function estimator, also called a regressor, is a mapping " f :X —R. The regression learning
problem is to learn a function estimator from examples (xi , f (xi))

Regression models are used to predict a continuous value. Predicting prices of a house given
the features of house like size, price etc is one of the common examples of Regression. It is a
supervised technique.

Types of Regression

Simple Linear Regression
Polynomial Regression
Support Vector Regression
Decision Tree Regression
Random Forest Regression

AR A

4

2 www.jntufastupdates.com


http://www.jntufastupdates.com/
https://en.wikipedia.org/wiki/Hierarchical_classification
https://en.wikipedia.org/wiki/Tree_(data_structure)

1.Simple Linear Regression

This is one of the most common and interesting type of Regression technique. Here we
predict a target variable Y based on the input variable X. A linear relationship should exist
between target variable and predictor and so comes the name Linear Regression.

Consider predicting the salary of an employee based on his/her age. We can easily identify
that there seems to be a correlation between employee’s age and salary (more the age more is
the salary). The hypothesis of linear regression is

Y = a + bX

Y represents salary, X is employee’s age and a and b are the coefficients of equation. So in
order to predict Y (salary) given X (age), we need to know the values of a and b (the model’s
coefficients).

- DCrata points -
Linear re gression
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While training and building a regression model, it is these coefficients which are learned and
fitted to training data. The aim of training is to find a best fit line such that cost function is
minimized. The cost function helps in measuring the error. During training process we try to
minimize the error between actual and predicted values and thus minimizing cost function.

In the figure, the red points are the data points and the blue line is the predicted line for the
training data. To get the predicted value, these data points are projected on to the line.

To summarize, our aim is to find such values of coefficients which will minimize the cost
function. The most common cost function is Mean Squared Error (MSE) which is equal to
average squared difference between an observation’s actual and predicted values. The
coefficient values can be calculated using Gradient Descent approach which will be
discussed in detail in later articles. To give a brief understanding, in Gradient descent we start
with some random values of coefficients, compute gradient of cost function on these values,
update the coefficients and calculate the cost function again. This process is repeated until we
find a minimum value of cost function.

2.Polynomial Regression
In polynomial regression, we transform the original features into polynomial features of a

given degree and then apply Linear Regression on it. Consider the above linear model Y =
a+bX is transformed to something like

5
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Y = a+bX+cX?

It is still a linear model but the curve is now quadratic rather than a line. Scikit-Learn
provides PolynomialFeatures class to transform the features.

<N

y = bo + buxa [+ baxf]

If we increase the degree to a very high value, the curve becomes overfitted as it learns the
noise in the data as well.

3.Support Vector Regression

In SVR, we identify a hyperplane with maximum margin such that maximum number of data
points are within that margin. SVRs are almost similar to SVM classification algorithm. We
will discuss SVM algorithm in detail in my next article.

Instead of minimizing the error rate as in simple linear regression, we try to fit the error
within a certain threshold. Our objective in SVR is to basically consider the points that are
within the margin. Our best fit line is the hyperplane that has maximum number of
points.

Random lines
22 T T

zo | N
18 |- - |
16 |- - |
14 |- .  -
-
12 | .
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4.Decision Tree Regression

Decision trees can be used for classification as well as regression. In decision trees, at each
level we need to identify the splitting attribute. In case of regression, the ID3 algorithm can
be used to identify the splitting node by reducing standard deviation (in classification
information gain is used).

A decision tree is built by partitioning the data into subsets containing instances with similar
values (homogenous). Standard deviation is used to calculate the homogeneity of a numerical
sample. If the numerical sample is completely homogeneous, its standard deviation is zero.

The steps for finding splitting node is briefly described as below:

1. Calculate standard deviation of target variable using below formula.

I- ——
[=(x — )2
. :

7T

Starndard Deviatior — S —
~N

2. Split the dataset on different attributes and calculate standard deviation for each branch
(standard deviation for target and predictor). This value is subtracted from the standard
deviation before the split. The result is the standard deviation reduction.

SDR(71T ,X)=S(T)—SI.X)

3. The attribute with the largest standard deviation reduction is chosen as the splitting node.

4. The dataset is divided based on the values of the selected attribute. This process is run
recursively on the non-leaf branches, until all data is processed.

To avoid overfitting, Coefficient of Deviation (CV) is used which decides when to stop
branching. Finally the average of each branch is assigned to the related leaf node (in
regression mean is taken where as in classification mode of leaf nodes is taken).

5.Random Forest Regression

Random forest is an ensemble approach where we take into account the predictions of several
decision regression trees.

1. Select K random points

2. ldentify n where n is the number of decision tree regressors to be created. Repeat
step 1 and 2 to create several regression trees.

3. The average of each branch is assigned to leaf node in each decision tree.

4. To predict output for a variable, the average of all the predictions of all decision
trees are taken into consideration.

Random Forest prevents overfitting (which is common in decision trees) by creating random
subsets of the features and building smaller trees using these subsets.

7
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The above explanation is a brief overview of each regression type.

ised and descriptive learni

e Unsupervised machine learning finds all kind of unknown patterns in data.

e Unsupervised methods help you to find features which can be useful for
categorization.

o It is taken place in real time, so all the input data to be analyzed and labeled in the
presence of learners.

e It is easier to get unlabeled data from a computer than labeled data, which needs
manual intervention.

Types of Unsupervised Learning

Unsupervised learning problems further grouped into clustering and association problems.
Clustering

Cluster/group

Clustering is an important concept when it comes to unsupervised learning. It mainly deals
with finding a structure or pattern in a collection of uncategorized data. Clustering algorithms
will process your data and find natural clusters(groups) if they exist in the data. You can also
modify how many clusters your algorithms should identify. It allows you to adjust the
granularity of these groups.

There are different types of clustering you can utilize:

Exclusive (partitioning)

In this clustering method, Data are grouped in such a way that one data can belong to one
cluster only.

Example: K-means

Agglomerative

In this clustering technique, every data is a cluster. The iterative unions between the two
nearest clusters reduce the number of clusters.

Example: Hierarchical clustering

8
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Overlapping

In this technique, fuzzy sets is used to cluster data. Each point may belong to two or more
clusters with separate degrees of membership.

Descriptive Learning : Using descriptive analysis you came up with the idea that, two
products A (Burger) and B (french fries) are brought together with very high frequency.
Now you want that if user buys A then machine should automatically give him a suggestion
to buy B. So by seeing past data and deducing what could be the possible factors influencing
this situation can be achieved using ML.

Domain

Discovery
algorithm

Des.crip[i-.reé

Features

rmiodel

objects

Flgure 3.4. In descriptive learning the task and learning problem coincide: we do not have a
separate training set, and the task is to produce a descriptive model of the data.

Predictive Learning : We want to increase our sales, using descriptive learning we came to
know about what could be the possible factors influencing sales. By tuning the parameters in
such a way so that sales should be maximized in the next quarter, and therefore predicting
what sales we could generate and hence making investments accordingly. This task can be
handled using ML also.

9
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Chapter-4
Conceptlearning
Concept learning, also known as category learning. "The search for and listing of attributes
that can be used to distinguish exemplars from non exemplars of various categories”. It is

Acquiring the definition of a general category from given sample positive and negative
training examples of the category.

Much of human learning involves acquiring general concepts from past experiences. For
example, humans identify different vehicles among all the vehicles based on specific sets of
features defined over a large set of features. This special set of features differentiates the
subset of cars in a set of vehicles. This set of features that differentiate cars can be called a
concept.

Similarly, machines can learn from concepts to identify whether an object belongs to a
specific category by processing past/training data to find a hypothesis that best fits the
training examples.

Target concept:

The set of items/objects over which the concept is defined is called the set of instances and
denoted by X. The concept or function to be learned is called the target concept and denoted
by c. It can be seen as a boolean valued function defined over X and can be represented as c:
X -> {0, 1}.

If we have a set of training examples with specific features of target concept C, the problem
faced by the learner is to estimate C that can be defined on training data.

H is used to denote the set of all possible hypotheses that the learner may consider regarding
the identity of the target concept. The goal of a learner is to find a hypothesis H that can
identify all the objects in X so that h(x) = c(x) for all x in X.

An algorithm that supports concept learning requires:
1. Training data (past experiences to train our models)
2. Target concept (hypothesis to identify data objects)
3. Actual data objects (for testing the models)

10
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Ihe hypothesis space

Each of the data objects represents a concept and hypotheses. Considering a hypothesis
<true, true, false, false> is more specific because it can cover only one sample. Generally,
we can add some notations into this hypothesis. We have the following notations:

1. [l (representsa hypothesis that rejects all)
2. <?,?,7?,?> (acceptsall)
3. <true, false, ? , ? > (accepts some)
The hypothesis [ will reject all the data samples. The hypothesis <? , ? , ? , ? > will accept

all the data samples. The ? notation indicates that the values of this specific feature do not
affect the result.

The total number of the possible hypothesis is (3 * 3 * 3 * 3) + 1 — 3 because one feature
can have either true, false, or ? and one hypothesis for rejects all ([7).

General to Specific

Many machine learning algorithms rely on the concept of general-to-specific ordering of
hypothesis.

1. hl = < true, true, ?, ? >

2. h2=<true, ?,?,?>

Any instance classified by hl will also be classified by h2. We can say that h2 is more
general than hl. Using this concept, we can find a general hypothesis that can be defined over
the entire dataset X.

To find a single hypothesis defined on X, we can use the concept of being more general than
partial ordering. One way to do this is start with the most specific hypothesis from H and
generalize this hypothesis each time it fails to classify and observe positive training data
object as positive.

1. The first step in the Find-S algorithm is to start with the most specific hypothesis,
which can be denoted by h <- <[, [J, [, [I>.
2. This step involves picking up next training sample and applying Step 3 on the sample.

3. The next step involves observing the data sample. If the sample is negative, the
hypothesis remains unchanged and we pick the next training sample by processing
Step 2 again. Otherwise, we process Step 4.

4. If the sample is positive and we find that our initial hypothesis is too specific because
it does not cover the current training sample, then we need to update our current
hypothesis. This can be done by the pairwise conjunction (logical and operation) of
the current hypothesis and training sample.

If the next training sample is <true, true, false, false> and the current hypothesis is
<[, [0, [0, >, then we can directly replace our existing hypothesis with the new one.

11
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If the next positive training sample is <true, true, false, true> and current hypothesis
is <true, true, false, false>, then we can perform a pairwise conjunctive. With the
current hypothesis and next training sample, we can find a new hypothesis by putting
? in the place where the result of conjunction is false:

<true, true, false, true> [ <true, true, false, false> = <true, true, false, ?>

Now, we can replace our existing hypothesis with the new one: h <-<true, true, false,
>

5. This step involves repetition of Step 2 until we have more training samples.

6. Once there are no training samples, the current hypothesis is the one we wanted to
find. We can use the final hypothesis to classify the real objects.

Paths through the hypothesis space

As we can clearly see in Figure 4.4, in this example we have not one but two most general
hypotheses. What we can also notice is that every concept between the least general one and
one of the most general ones is also a possible hypothesis, i.e., covers all the positives and
none of the negatives. Mathematically speaking we say that the set of Algorithm 4.3: LGG-
Conj-ID(x, y) — find least general conjunctive generalisation of two conjunctions, employing
internal disjunction.

Input : conjunctions x, y.

Output : conjunction z.

1z «true;

2 for each feature f do
3iff=vxisaconjunctinxandf=vyisaconjunctiny then
4 add f = Combine-ID(vx , vy ) to z; // Combine-ID: see text
5end

6 end

7 return z

12
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13

(Lﬂnglh:[ﬂ.d]& Beak.:’y\asj [Lﬂngth:[:i.d-]& Euill&::n:a

[LEnglh:[E 4] & Gills=no & Eeat_—'y\esj

Gills=no & Baak=yas

Figure 4.4. (top) A snapshot of the expanded hypothesis space that arises when internal dis-
junction is used for the ‘Length’ feature. We now need one more generalisation step to travel
upwards from a completely specified example to the empty conjunction. (bottom) The version
space consists of one least general hypothesis, two most general hypotheses, and three in be-
tween.

hypotheses that agree with the data is a convex set, which basically means that we can
interpolate between any two members of the set, and if we find a concept that is less
general than one and more general than the other then that concept is also a member
of the set. This in turn means that we can describe the set of all possible hypotheses by

its least and most general members. This is summed up in the following definition.

Definition 4.1 (Version space). A concept is complete if it covers all positive exam-
ples. A concept is consistent if it covers none of the negative examples. The version
space is the set of all complete and consistent concepts. This set is convex and is fully
defined by its least and most general elements. :
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Figure 4.5. (left) A path in the hypothesis space of Figure 4.3 from one of the positive examples
(p1, see Example 4.2 on p.110) all the way up to the empty concept. Concept A covers a single
example; B covers one additional example; C and D are in the version space, and so cover all
three positives; E and F also cover the negative. (right) The corresponding coverage curve, with
ranking p1 - p2-p3-nl.
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Beyond conjunctive concepts

Recall from Background 4.1 that a conjunctive normal form expression (CNF) is a con-
junction of disjunctions of literals, or equivalently, a conjunction of clauses. The con-
junctions of literals we have looked at until now are trivially in CNF where each disjunc-
tion consists of a single literal. CNF expressions are much more expressive, particularly
since literals can occur in several clauses. We will look at an algorithm for learning
Horn theories, where each clause A — B is a Horn clause, i.e., A is a conjunction of lit-
erals and B is a single literal. For ease of notation we will restrict attention to Boolean
features, and write F for F = true and —F for F = false. In the example below we adapt
the dolphins example to Boolean variables ManyTeeth (standing for Teeth = many),
Gills, Short (standing for Length = 3) and Eeak.

When we looked at learning conjunctive concepts, the main intuition was that un-
covered positive examples led us to generalise by dropping literals from the conjunc-
tion, while covered negative examples require specialisation by adding literals. This
intuition still holds if we are learning Horn theories, but now we need to think ‘clauses’
rather than ‘literals’ Thus, if a Horn theory doesn't cover a positive we need to drop all
clauses that violate the positive, where a clause A — B violates a positive if all literals
in the conjunction A are true in the example, and B is false.

Things get more interesting if we consider covered negatives, since then we need
to find one or more clauses to add to the theory in order to exclude the negative. For

example, suppose that our current hypothesis covers the negative
Many Teeth A Gills A Short A —=Beak

To exclude it, we can add the following Horn clause to our theory:
Many Teeth a Gills A Short — Beak

While there are other clauses that can exclude the negative (e.g., Many Testh — Beak)
this is the most specific one, and hence least at risk of also excluding covered positives.
However, the most specific clause excluding a negative is only unique if the negative

has exactly one literal set to false. For example, if our covered negative is
Many Testh A Gills A =Short A —Beak
then we have a choice between the following two Horn clauses:

ManyTeeth A Gills — Short
ManyTeeth A Gills — Beak

Notice that, the fewer literals are set to true in the negative example, the more general

the clauses excluding the negative are.

15
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The approach of Algorithm 4.5 is to add all of these clauses to the hypothesis. How-
ever, the algorithm applies two clever tricks. The first is that it maintains a list 5 of
negative examples, from which it periodically rebuilds the hypothesis. The second is
that, rather than simply adding new negative examples to the list, it tries to find neg-
atives with fewer literals set to true, since this will result in more general clauses. This
is possible if we assume we have access to a membership oracle Mb which can tell us
whether a particular example is a member of the concept we're learning or not. So in
line 7 of the algorithm we form the intersection of a new negative x and an existing one
5€ §-1i.e., an example with only those literals set to true which are true in both x and
5 — and pass the result z to the membership oracle to check whether it belongs to the
target concept. The algorithm also assumes access to an equivalence oracle Eq which
either tells us that our current hypothesis h is logically equivalent to the target formula
f, or else produces a counter-example that can be either a false positive (it is covered
by h but not by f) or a false negative (it is covered by f but not by h).

Algorithm 4.5: Horn( Mb, Eg) —learn a conjunction of Horn clauses from member-

ship and equivalence oracles.

Input :equivalence oracle Eq; membership oracle Mb.
Output : Horn theory h equivalent to target formula f.

1 b «—true; /I conjunction of Horn clauses, initially empty
2 5—¢@; 1 alist of negative examples, initially empty
3 while Eg(h) returns counter-example x do
4 if x violates at least one clause of h then /I x is a false negative
5 specialise h by removing every clause that x violates
B else /! xis a false positive
7 find the first negative example s S such that (i) z = sn x has fewer true
literals than s, and (ii) Mb{z) labels it as a negative;
8 if such an example exists then replace s in § with z, else append x to the
end of §;
g9 h —true;
10 forall se Sdo {{ rebuild h from 3
11 p +—the conjunction of literals true in s;
12 () —the set of literals false in s;
13 forallge Qdoh—hn (p— q);
14 end
15 end
16 end
17 return h
XXX
16
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UNIT- I

Tree models: Decision trees, Ranking and probability estimation trees, Tree learning as
variance reduction. Rule models: Learning ordered rule lists, Learning unordered rule sets,
Descriptive rule learning, First-order rule learning

1) Tree models:

e A tree model is a hierarchical structure of conditions, where leafs contain tree outcome.

e They represent recursive divide-and-conquer strategies.

e Tree models are among the most popular models in machine learning, because they are
easy to understand and interpret:

e E.g., Kinect uses them to detect character pose.

a) Decision trees
b) Ranking and probability estimation trees

c) Tree learning as variance reduction
a) Decision trees

A decision tree is a flowchart-like structure in which each internal node represents a "test" on an
attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the
test, and each leaf node represents a class label (Decision taken after computing all attributes). The paths
from root to leaf represent classification rules.

Decision Analysis, a decision tree and the closely related influence diagram are used as a visual
and analytical decision support tool, where the expected values (or expected utility) of competing
alternatives are calculated.

A decision tree consists of three types of nodes:

1. Decision nodes — typically represented by squares
2. Chance nodes — typically represented by circles
3. End nodes — typically represented by triangles

Decision trees are commonly used in operations research and operations management. If, in
practice, decisions have to be taken online with no recall under incomplete knowledge, a decision
tree should be paralleled by a probability model as a best choice model or online selection
model algorithm. Another use of decision trees is as a descriptive means for
calculating conditional probabilities.

Decision trees, influence diagrams, utility functions, and other decision analysis tools and
methods are taught to undergraduate students in schools of business, health economics, and public
health, and are examples of operations research or management science methods.

Decision tree rules

The decision tree can be linearized into decision rules, where the outcome is the contents of the
leaf node, and the conditions along the path form a conjunction in the if clause. In general, the
rules have the form: if conditionl and condition2 and condition3 then outcome.

1
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Decision rules can be generated by constructing association rules with the target variable on
the right. They can also denote temporal or causal relations

Decision tree

How to define BestSplit(D, F) for classification?

Assume that we have binary features and two classes only. Let D* denote set of
instances from positive class and D~ from negative class, D=D*uD".

Let split D into D; and D> using an attribute. The best situation is where
Df =" and DI =@ or Dl* = @ and D1 = D" . In this cases the child node is
said to be pure.

This, however, is unlikely in practice, thus we have to measure impurity of
children nodes somehow.

Impurity measures

&= Minority class min(p,1— p) — proportion of misclassified examples if
labeling leaf using majority class

&= Gini index 2p(1 — p) — expected error if labeling examples in leaf randomly
with prorability pfor positive class and 1 — p for negative class

¢= Entropy —plog, p— (1— p)log,(1 — p) — expected amount of information in
bits required to classify an example in leaf

2
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Decision tree example

Suppose you come across a number of sea animals that you suspect belong to
the same species. You observe their length in metres, whether they have gills,
whether they have a prominent beak, and whether they have few or many teeth.
Let the following be dolphins (positive class):

pl: Length=3 A Gills=no A Beak=yes A Teeth= many
p2: Length=4 A Gills=no A Beak=yes A Teeth= many
p3: Length=3 A Gills=no A Beak=yes A Teeth=few
p4: Length=5 A Gills=no A Beak=yes A Teeth= many
p5: Length=5 A Gills=no A Beak=yes A Teeth=few

and the following be not dolphins (negative class):

ni: Length=5 A Gills=yes A Beak=yes A Teeth =many
n2: Length=4 A Gills=yes A Beak=yes A Teeth =many
n3: Length=5 A Gills=yes A Beak=no A Teeth= many
n4: Length=4 A Gills=yes A Beak=no A Teeth= many
n5: Length=4 A Gills=no A Beak=yes A Teeth=few

= fQ
B,

"% Figure 5.1, p.130 Decision tree example

A decision tree learned on this data separates the positives and negatives
perfectly.

Cix)== CTeeth ) Cx)=&
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B¢ Algorithm 5.2, p.137 Finding the best split for a decision tree

Algorithm BestSplit-Class(D, F) — find the best split for a decision tree.

Input :data D; set of features F.
Output : feature f to split on.

end
return fpest

1 Imin <—1;

2 for each f € Fdo

3 split D into subsets Djy,..., D; according to the values v;j of f;
4 if Inp({Dy,...,D;}) < Imin then

5 Imin <Imp({D»,...,D;});

6 fbest ‘_f;

7 end

8

9

b) Ranking and probability estimation trees

Decision trees divide the instance space into segments, by learning ordering on
those segments the decision trees can be turned into rankers.

Thanks to access to class distribution in each leaf the optimal orderdering for the
training data can be obtained from empirical probabilities p (of positive class).

The ranking obtained from the empirical probabilities in the leaves of a decision
tree yields a convex ROC curve on the training data.

4
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¥ Figure 5.4, p.140 Growing a tree
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(left) Absiract representation of a tree with numbers of positive and negative examples
covered in each node. Binary splits are added 1o the tree in the order indicated. (right)
Adding a split to the tree will add new segments to the coverage curve as indicated by
the arrows. After a split is added the segments may need reordering, and so only the
solid lines represent actual coverage curves.

Figure 5.5, p.141 Labelling a tree

-\
‘|
“

Negatves

Graphical depiction of all possible labellings and all possible rankings that can be
obtained with the four-leaf decision tree in Figure 5.4. There are 2 = 16 possible leaf
labellings; e.g., ‘+— +—" denotes labelling the first and third leaf from the left as + and
the second and fourth leaf as —. There are 4! = 24 possible blue-violei-red-orange paths
through these points which start in — — —— and switch each leaf to + in some order;
these represent all possible four-segment coverage curves or rankings.

5

3 www.jntufastupdates.com


http://www.jntufastupdates.com/

1

o O s N

7
8

Figure 5.6, p.143 Pruning a tree

(left) To achieve the labelling + — ++ we don't need the right-most split, which can
therefore be pruned away. (right) Pruning doesn'’t affect the chosen operating point, but
it does decrease the ranking performance of the tree.

& Prunning must not improve classification accuracy on training set
&= However may improve generalization accuracy on test set

&= A popular algorithm for pruning decision trees is reduced-error pruning that
employs a separate prunning set of labelled data not seen during training.

" Algorithm 5.3, p.144 Reduced-error pruning

Algorithm PruneTree(T, D) — reduced-error pruning of a decision tree.

Input :decision tree T’ labelled data D.

Output : pruned tree T".

for every internal node N of T, starting from the bottom do

T’y —subtree of T rooted at N;

Dy < {x € D|x is covered by N};

if accuracy of Ty over Dy is worse than majority class in Dy then
| replace T in T by a leaf labelled with the majority class in Dy;

end

end
return pruned version of T
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Fon =

% Example 5.3, p.144 Skew sensitivity of splitting criteria ll

You then remember that mistakes on the positives are about ten times as costly
as mistakes on the negatives.

&= You're not quite sure how to work out the maths, and so you decide to
simply have ten copies of every positive: the splits are now
[80+,2—][20+,8—] and [100+,6—][0+,4—].

&= You recalculate the three splitting criteria and now all three favour the
second split.

&= Even though you're slightly bemused by all this, you settle for the second
split since all three splitting criteria are now unanimous in their
recommendation.

-

s 5

Eaig R
e

¥ Figure 5.7, p.146 Skew sensitivity of splitting criteria

e
gy

Negatives Negatives

(left) ROC isometrics for entropy in blue, Gini index in violet and v/Gini in red through
the splits [8+,2—][2+,8—] (solid lines) and [10+,6—][0+,4—] (dotted lines). Only /Gini
prefers the second split. (right) The same isometrics after inflating the positives with a
factor 10. All splitting criteria now favour the second split; the v/Gini isometrics are the
only ones that haven’t moved.
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c) Tree learning as variance reduction
(i)Regression Tree

Tree learning as variance reduction

= The variance of a Boolean (i.e., Bernoulli) variable with success probability
pis p(1— p), which is half the Gini index. So we could interpret the goal of
tree learning as minimising the class variance (or standard deviation, in
case of v/Gini) in the leaves.

&= In regression problems we can define the variance in the usual way:

1
=— > (y-p)7

Var(Y) =
Y1 v

If a split partitions the set of target values Y into mutually exclusive sets

1Yy,..., Y;l, the weighted average variance is then
LY 1 LYl
Var({Yy, .., Vi) = Y —Lvar(Yj)=...= — ¥ y*- Y —L3°
S Iv g S v

The first term is constant for a given set ¥ and so we want to maximise the
weighted average of squared means in the children.

Example 5.4, p.150 Learning a regression tree |

Imagine you are a collector of vintage Hammond tonewheel organs. You have
been monitoring an online auction site, from which you collected some data
about interesting transactions:

# Model Condition Leslie Price
1. B3 excellent no 4513
2. T202 fair yes 625
3. A100 good no 1051
4. T202 good no 270
5 M102 good yes 870
6. A100 excellent no 1770
7. T202 fair no 99
8. A100 good yes 1900
9. E112 fair no 77
8
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" Example 5.4, p.150 Learning a regression tree |l

From this data, you want to construct a regression tree that will help you
determine a reasonable price for your next purchase.
There are three features, hence three possible splits:

Model = [A100,B3,E112,M102, T202]
(1051,1770,1900][4513][77][870][99,270,625]

Condition = [excellent, good, fair]
[1770,4513][270,870,1051,1900]([77,99,625]

Leslie = [yes,no] [625,870,1900][77,99,270,1051,1770,4513]

The means of the first split are 1574, 4513, 77, 870 and 331, and the weighted
average of squared means is 3.21 - 10°.

The means of the second split are 3142, 1023 and 267, with weighted average of
squared means 2.68-10°;

for the third split the means are 1132 and 1297, with weighted average of
squared means 1.55-10°.

We therefore branch on Model at the top level. This gives us three
single-instance leaves, as well as three A100s and three T202s.

R )
P )
SENL,

"% Example 5.4, p.150 Learning a regression tree |l

For the A100s we obtain the following splits:

Condition = [excellent, good, fair] [1770][1051, 1900]]]
Leslie = [yes, no] [1900][1051,1770]

Without going through the calculations we can see that the second split results in
less variance (to handle the empty child, it is customary to set its variance equal
to that of the parent). For the T202s the splits are as follows:

Condition = [excellent, good, fair] [11270][99, 625]
Leslie = [yes, no] [625][99,270]

Again we see that splitting on Leslie gives tighter clusters of values. The learned
regression tree is depicted in Figure 5.8.

9
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¥ Figure 5.8, p.150 A regression tree

=E122 \ =M102

( Leslie ) T(x)=4513 T(x)=77 T(x)=870 [ Leslie
=no

- Fi

1(x)=1900 T(x)=1411 1(x)=625 1(x)=185

A regression tree learned from the data in Example 5.4.

(i Clustering Tree

L
% -‘f:"-.?i.
iy

S

Example 5.5, p.152 Learning a clustering tree |

Assessing the nine transactions on the online auction site from Example 5.4,
using some additional features such as reserve price and number of bids, you
come up with the following dissimilarity matrix:

0 1
11
6
13
10
3
13
3
12

1 1

= NN === DO = D
O B~ O B~ O O N = W
omnNn O Ww o O = = 0O
W=~ O W H == W W
O kO B~ O O N O W
2O A~ =2 M AN P&~ W
O k2 O W o O = 0OmMmn

This shows, for instance, that the first transaction is very different from the other
eight. The average pairwise dissimilarity over all nine transactions is 2.94.

10
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" Example 55, p.152 Learning a clustering tree |l

Using the same features from Example 5.4, the three possible splits are (now
with transaction number rather than price):

Model = [A100,B3,E112,M102, T202] [3,6,8][1]19][5](2,4,7]

Condition = [excellent, good, fair| [1,6]]3,4,5,8]]2,7,9]

Leslie = [yes, no] [2,5,8][1,3,4,6,7,9]

The cluster dissimilarity among transactions 3, 6 and 8 is

3—12[0 +1+2+14+0+1+2+1+0)=0.89; and among transactions 2, 4 and 7 it is
3% (0+1+0+1+0+4+0+0+0+0)=0.22. The other three children of the first split
contain only a single element and so have zero cluster dissimilarity. The
weighted average cluster dissimilarity of the split is then
3/9-0.89+1/9-0+1/9-0+1/9-0+3/9-0.22 = 0.37. For the second split,
similar calculations result in a split dissimilarity of
2/9-1.54+4/9-1.19+3/9-0=0.86, and the third split yields
3/9-1.56+6/9-3.56 = 2.89. The Model feature thus captures most of the given
dissimilarities, while the Leslie feature is virtually unrelated.

¥ Figure 5.9, p.154 A clustering tree

=E122 % =M102

(16,14, 9.7) (45, 30, 22) (1,0, 35) (9,5, 2) (3.3, 0,43)

A clustering tree learned from the data in Example 5.6 using Euclidean distance on the

numerical features.
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2) Rule models:

They are four types of rule models

a) Learning ordered rule lists, b) Learning unordered rule sets,

c) Descriptive rule learning  d) First-order rule learning

a) Learning ordered rule lists

o

S¥ - Algorithm 6.1, p.163

Learning an ordered list of rules

Algorithm LearnRuleList(D) — learn an ordered list of rules.

: labelled training data D.

/1 LearnRule: see Algorithm 6.2

D —D\ {x€ D]|x is covered by r};

Input

Output : rule list R.

R —@;

while D # ¢ do
r —LearnRule(D) ;
append r to the end of R;

end

return R

SRk

Lo 3
Er]
e

Example 6.1, p.159

Learning a rule list |

Consider again our small dolphins data set with positive examples

p1
p2
p3
p4
p5

: Length=3
: Length=4
: Length=3
: Length=5
: Length=15

and negatives

ni
n2
n3
n4
nS

s Length=5
: Length=4
: Length=5
: Length=4
: Length=4

A Gills=no A Beak =yes A Teeth= many
A Gills=no A Beak =yes A Teeth= many
A Gills=no A Beak=yes A Teeth=few
A Gills=no A Beak=yes A Teeth= many
A Gills=no A Beak =yes A Teeth = few

A Gills=yes A Beak=yes A Teeth = many
A Gills=yes A Beak=yes A Teeth = many
A Gills=yes A Beak=no A Teeth= many
A Gills=yes A Beak=no A Teeth= many
A Gills=no A Beak =yes A Teeth =few

10
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“ Example 6.1, p.159 Learning a rule list I

&= The nine possible literals are shown with their coverage counts in Figure 6.2
(left).

&= Three of these are pure; in the impurity isometrics plot in Figure 6.2 (right)
they end up on the x-axis and y-axis.

&= One of the literals covers two positives and two negatives, and therefore
has the same impurity as the overall data set; this literal ends up on the
ascending diagonal in the coverage plot.

' Figure 6.4, p.162 Constructing the third rule

Positives

| Length— Lenglh=4 Lenglh_'f- | Gills=no Beak=yes Teeth—fe
[1+ 0—] [0+, 1-] [1+ 0] [2+,1-] [2+,1-]

(left) The third rule covers the one remaining negative example, so that the remaining
positives can be swept up by a default rule. (right) This will collapse the coverage space.

MNeagativas

13
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Rule list as a tree

Paaiivas

(left) A right-branching feature tree corresponding to a list of single-literal rules. (right)
The construction of this feature tree depicted in coverage space. The leaves of the tree
are either purely positive (in green) or purely negative (in red). Reordering these leaves
on their empirical probability results in the blue coverage curve. As the rule list separates

the classes this is a perfect coverage curve.

DRules List For Ranking and Probability Estimations

Rule lists inherit the property of decision trees that their training set coverage curve is
always convex

Fosives

NegaEhes

Coverage curves of two rule lists consisting of the rules from Example 6.2, in different
order (AB in blue and ). B\ A corresponds to the coverage of rule B once
the coverage of rule A is taken away, and ‘-’ denotes the default rule. The dotted
segment in red connecting the two curves corresponds to the overlap of the two rules
A A B, which is not accessible by either rule list.

14
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b)L earning ordered rule lists

Algorithm 6.3, p.171 Learning an unordered set of rules

Algorithm LearnRuleSet(D) — learn an unordered set of rules.

Input :labelled training data D.
Output :rule set R.

1 R—@;
2 for every class C; do
3 D; —D:;
4 while D; contains examples of class C; do
5 r —LearnRuleForClass(D;, C;) ; // LearnRuleForClass: see Algorithm
6.4
6 R —RuU{r};
7 D; «—D;\{xe Cj|xis covered by r} ; // remove only positives
8 end
9 end
o return R
"% Algorithm 6.4, p.171 Learning a single rule for a given class

Algorithm LearnRuleForClass(D, C;) — learn a single rule for a given class.

Input :labelled training data D; class C;.

Output : rule r.
1 b —true;
2 [ —set of available literals ; // can be initialised by seed example
3 While not Homogeneous(D) do
4 [ —BestLiteral(D, L, Cj) ; // e.g. maximising precision on class C;
5 b~—bnl
6 D — {x € D|x is covered by b};
7 L+— L\{l'e L|l' uses same feature as [};
8 end
a 1 — -if b then Class= Cj-;
o return r

15
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c)Descriptive rule learning
1)Rule L earning for subgroup discovery

Subgroups are subsets of the instance space — or alternatively, mappings
g: % — |true,false} — that are learned from a set of labelled examples
(x7,1(x;)), where [ : & — %€ is the true labelling function.

&= A good subgroup is one whose class distribution is significantly different
from the overall population. This is by definition true for pure subgroups, but
these are not the only interesting ones.

For instance, one could argue that the complement of a subgroup is as
interesting as the subgroup itself: in our dolphin example, the concept
Gills = yes, which covers four negatives and no positives, could be

considered as interesting as its complement Gills = no, which covers one
negative and all positives.

&= This means that we need to move away from impurity-based evaluation
measures.

(left) Subgroups and their isometrics according to Laplace-corrected precision. The
solid, outermost isometrics indicate the best subgroups. (right) The ranking changes if

we order the subgroups on average recall. For example, [5+, 1—] is now better than
[3+,0—] and as good as [0+,4—].

16
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11) Association rule mining:

Rule-1

Frequent item sets can be used to build association rules, which are rules of the
form -if B then H- where both body B and head H are item sets that frequently
appear In transactions together.

4= Pick any edge in Figure 6.17, say the edge between {beer} and
Inappies, beer}. We know that the support of the former is 3 and of the
latter, 2: that is, three transactions involve beer and two of those involve
nappies as well. We say that the confidence of the association rule
-if beer then nappies- is 2/3.

&= Likewise, the edge between {nappies} and {nappies, beer} demonstrates
that the confidence of the rule -if nappies then beer- is 2/4.

&= There are also rules with confidence 1, such as -if beer then crisps-; and
rules with empty bodies, such as -if true then crisps-, which has confidence
5/8 (i.e., five out of eight transactions involve crisps).

Rule-2

But we only want to construct association rules that involve frequent items.

&= The rule -if beer A apples then crisps- has confidence 1, but there is only
ohe transaction involving all three and so this rule is not strongly supported
by the data.

&= So we first use Algorithm 6.6 to mine for frequent item sets; we then select
bodies B and heads H from each frequent set m, discarding rules whose
confidence is below a given confidence threshold.

&= Notice that we are free to discard some of the items in the maximal frequent
sets (i.e., HU B may be a proper subset of m), because any subset of a
frequent item set is frequent as well.

17
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Algorithm AssociationRules(D, fu, co) —find all association rules exceeding given
support and confidence thresholds.

Input :data D < %'; support threshold fy; confidence threshold cy.
Output : set of association rules R.

1 R—¢@;

2 M — Frequentltems(D), fo) ; /I Frequentltems: see Algorithm 6.6
3 for cach me M do

4 for each [/ <€ mand B< m suchthat 1 n B =@ do

5 ‘ if Supp(Bu H)/Supp(B) = ¢y then R — Ru {-if B then H-};

6 end

7 end

8 return R

Association rule example

A run of the algorithm with support threshold 3 and confidence threshold 0.6
gives the following association rules:

-if beer then crisps-  support 3, confidence 3/3
-if crisps then beer-  support 3, confidence 3/5
-if true then crisps-  support 5, confidence 5/8

Association rule mining often includes a post-processing stage in which
superfluous rules are filtered out, e.g., special cases which don’t have higher
confidence than the general case.

d) First-order rule learning

—->0ne of the most expressive and human readable representations for learned hypotheses is sets of

production rules (if-then rules).

—>Rules can be derived from other representations (e.g., decision trees) or they can be learned directly.

Here, we are concentrating on the direct method.

- An important aspect of direct rule-learning algorithms is that they can learn sets of first-order rules
which have much more representational power than the propositional rules that can be derived from
decision trees. Learning first-order rules can also be seen as automatically inferring PROLOG

programs from example.

Propositional versus First-Order Logic:

18
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—>Propositional Logic does not include variables and thus cannot express general relations among the
values of the attributes.

Example 1: in Propositional logic, you can write: |F (Father;=Bob) » (Name;=Bob)" (Female1=True)
THEN Daughtery ,=True.

This rule applies only to a specific family!

Example 2: In First-Order logic, you can write

IF Father(y,x) * Female(y), THEN Daughter(x,y)

This rule (which you cannot write in Propositional Logic) applies to any family!

Learning Propositional versus First-Order Rules:

—>Both approaches to learning are useful as they address different types of learning problems.

—>Like Decision Trees, Feed forward Neural Nets and IBL systems, Propositional Rule Learning
systems are suited for problems in which no substantial relationship between the values of the different
attributes needs to be represented.

—>In First-Order Learning Problems, the hypotheses that must be represented involve relational
assertions that can be conveniently expressed using first-order representations such as horn clauses (H
<-Li*..ALp

19
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10

Machine Learning Notes Unit-4 Linear Models

Linear Models

1. Definition: If x1 and x2 are two scalars or vectors of the same dimension and o and B
are arbitrary scalars, then ox1+Bx2 is called a linear combination of x1 and x2. If f is a linear
function of x, then f (ax1 +px2) = af (x1)+pf (x2)

The function value of a linear combination of some inputs is a linear combination of
their function values. As a special case, if f=1—a we are taking a weighted average of x1
and x2, and the linearity of f then means that the function value of the weighted average is the
weighted average of the function values. Linear functions take particular forms, depending on
the domain and codomain of f. If x and f (x) are scalars, it follows that f is of the form f (x) =
a+bx for some constants a and b; a is called the intercept and b the slope. If x = (x1, . . .,xd )
is a vector and f (x) is a scalar, then f is of the form

f (x) =a +b1x1 +.. .+bd xd = a +b- x

with b = (b1, . . .,bd ). The equation f (x) = O defines a plane in Rd perpendicular to the
normal vector b.

1.1 Characteristics of Linear Model:

a. Linear models are parametric, meaning that they have a fixed form with a small
number of numeric parameters that need to be learned from data. This is different
from tree or rule models, where the structure of the model (e.g., which features to use
in the tree, and where) is not fixed in advance.

b. Linear models are stable, which is to say that small variations in the training data have
only limited impact on the learned model. Tree models tend to vary more with the
training data, as the choice of a different split at the root of the tree typically means
that the rest of the tree is different as well.

c. Linear models are less likely to overfit the training data than some other models,
largely because they have relatively few parameters. The flipside of this is that they
sometimes lead to underfitting: e.g., imagine you are learning where the border runs
between two countries from labelled samples, then a linear model is unlikely to give a
good approximation.

2. The least-squares method:

a. The method of least squares is about estimating parameters by minimizing the squared
discrepancies between observed data and their expected values on the other.

b. Considering an arbitrary straight line, y=bo+bix is to be fitted through these data
points.
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Machine Learning Notes Unit-4 Linear Models

c. The Least Squares (LS) criterion states that the sum of the squares of errors is
minimum. The least squares yields y(x), whose elements sum to 1, but do not ensure
the outputs to be in the range [0,1].

d. Draw a line based on the data points and assume the imaginary line of y=a+bx and
imagine a vertical distance between the line and a data point and calculate E=Y-E(Y),
this error is the deviation of the data point from the regression line.

e. Letus get aand b that can minimizes the sum of squared deviations. This method is
called “Least Squares”. The process of getting parameter estimators is called
“estimations”. Least Square method is the estimation method of Ordinary Least
Squares (OLS)

2.1 Univariate Analysis:

1. The simplest form of regression analysis is a univariate regression or a model
with one independent variable.

2. Univariate analysis is the simplest form of data analysis where the data being
analyzed contains only one variable. Since it’s a single variable it does not
deal with causes or relationships.

3. The main purpose of univariate analysis is to describe the data and find
patterns that exist with in it.

4. Assuming a linear relationship between the independent and dependent
variables, the general equation can be written as:

Wi=a+ Bi +€

We can write univariate linear regression in matrix form as

h 1 X €]

= ¢ la+ : b+

¥Yn | L, Xn €n

5. The parameter a is called “intercept” or the value of W, when x=0
6. Since there is only one independent variable, regression analysis estimates

parameters that provide the “best fitting” line when the dependent variable is
graphed on the vertical axis and independent variable is on horizontal axis.

Ex: For a given data having 100 examples, if squared errors SE1,SE2, and SE3 are
13.33,3.33 and 4.00 respectively, calculate Mean Squared Error (MSE).

Sol: Mean Squared Error= X.SEi

n

MSE= W: 0.2066

2.2 Multivariate Regression:

1. In order to deal with an arbitrary number of features it will be useful to employ matrix
Notation
2. The multivariate regression problem is

Page 2
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ﬁ'zS'lX[_v

3. Assume that the features are uncorrelated (meaning the covariance between every pair
of different features is 0) in addition to being zero-centred. The covariance matrix X is
diagonal with entries gj j . Since X'X = n(Z+M), and since the entries of M are 0
because the columns of X are zero-centred, this matrix is also diagonal with entries
naoj | —in fact, it is the matrix S referred to above.

4. (X'™X)* acts as a transformation that decorrelates, centres and normalises the
features.

5. If multiple independent variables affect the response variable, then the analysis calls
for a model different from that used for the single predictor variable.

2.3 Bivariate linear regression in matrix notation:

1. we derive the basic expressions.

[ X X2 ] ,

X113 ot Xm : £ on+x;. Op+xix

X'x = : =n o i
y : O iTTxG O tXs

xx-! A ( O+ 75 ‘012“_1:\_:)
nD\ —op-41X2 on+x
2.
N .
Xly = (_\-“ cee- X ) : :n( 01_).+£if)
X12 - Xp2 : Oay+X2Y
Vn
3. ;i

2.4 Regularized Expression:

1. Regularisation is a general method to avoid such overfitting by applying additional
constraints to the weight vector
2. A common approach is to make sure the weights are, on average, small in magnitude:
this is referred to as shrinkage.
3. Process to achieve:
a. write down the least-squares regression problem as an optimisation problem:

w' =argmin (y— Xw)T(_v —Xw)
w

b. write the sum of squared residuals as a dot product. The regularised version of
this optimisation is then as follows:

w’ = argmin (y— Xw)'r (y—Xw)+ A [lwi|?
w
where IWIF=2.; 7 s the squared normof the vector w, or, equivalently, the dot
product w'w; A is a scalar determining the amount of regularisation.
4. This regularised problem still has a closed-form solution:
w=X"X+an"X"y
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10 www.jntufastupdates.com



http://www.jntufastupdates.com/

10

Machine Learning Notes Unit-4 Linear Models

where | denotes the identity matrix with 1s on the diagonal and Os everywhere else.
regularisation amounts to adding 4 to the diagonal of XX, a well-known trick to
improve the numerical stability of matrix inversion. This form of least-squares
regression is known as ridge regression.

alternative form of regularised regression is provided by the lasso, which stands for
‘least absolute shrinkage and selection operator’. It replaces the ridge regularisation
term

L WE with the sum of absolute weights =i %k

The result is that some weights are shrunk, but others are set to 0, and so the lasso
regression favours sparse solutions.

It should be added that lasso regression is quite sensitive to the regularisation
parameter A, which is usually set on hold-out data or in cross-validation.

Also, there is no closed-form solution and so some numerical optimisation technique
must be applied.

Using least-squares regression for classification

1.

w

o

we can also use linear regression to learn a binary classifier by encoding the two
classes as real numbers.

For instance, we can label the Pos positive examples with y@ =+1 and the Neg
negative examples with y =—1. It then follows that X'y =Pos u@—-Neg u_,
whereu@ andu_ are d-vectors containing each feature’s mean values for the positive
and negative examples, respectively.

In the general case, the least-squares classifier learns the decision boundary w-x =t

with
w= (X"X)"! (Pos p® —Neg ')
We would hence assign class * y = sign(w- x—t ) to instance x, where

+1 ifx>0
sign(x)=< 0 ifx=0

-1 ifx<0
Various simplifying assumptions can be made, including zero-centred features, equal
variance features, uncorrelated features and equal class prevalences.
A general way of constructing a linear classifier with decision boundary w- x =t is by
constructing w as M—1(n@ud —n p ), with different possible choices of M, n@ and
n.
The full covariance approach with M= X"X has time complexity O(n*d) for

construction of M and O(d®) for inverting it,1 so this approach becomes unfeasible
with large numbers of features.

3. The Perceptron:

1. A linear classifier that will achieve perfect separation on linearly separable
data is the perceptron, originally proposed as a simple neural network.

2. The perceptron iterates over the training set, updating the weight vector every
time it encounters an incorrectly classified example.
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3. For example, let xi be a misclassified positive example, then we have vyi
=+Jlandw-xi <t . We therefore want to find w such that w-xi >w-xi , which
moves the decision boundary towards and hopefully past xi . This can be
achieved by calculating the new weight vector as w = w+#xi , where 0 < 5 <
1 is the learning rate.

4. It iterates through the training examples until all examples are correctly
classified. The algorithm can easily be turned into an online algorithm that
processes a stream of examples, updating the weight vector only if the last
received example is misclassified.

5. The perceptron is guaranteed to converge to a solution if the training data is
linearly separable, but it won’t converge otherwise.

6. The key point of the perceptron algorithm is that, every time an example Xi is
misclassified, we add yi xi to the weight vector.

7. After training has completed, each example has been misclassified zero or
more times — denote this number oi for example Xi .

Algorithm: Perceptron(D,#) — train a perceptron for linear classification.
Input : labelled training data D in homogeneous coordinates; learning rate #.
Output : weight vector w defining classifier “ y = sign(w- x).

1 w<0 ; // Other initialisations of the weight vector are possible

2 converged<Tfalse;

3 while converged = false do

4 converged<«—true,

5 fori=1to|D| do

6 if yiw- xi <0 //ie,yi=yi

7 then

8 We—W-+7 i Xi ;

9 converged<Tfalse; //We changed w so haven’t converged yet
10 end

11 end

12 end

4. Support vector machines:

%+ The training examples nearest to the decision boundary are called support vectors: the
decision boundary of a support vector machine (SVM) is defined as a linear
combination of the support vectors.

% The margin is thus defined as m/||w||, where m is the distance between the decision
boundary and the nearest training instances (at least one of each class) as measured
along w. Since we are free to rescale t, ||w|| and m, it is customary to choose m = 1.

% Maximising the margin then corresponds to minimising ||w|| or, more conveniently, %
|Iw|[?, provided of course that none of the training points fall inside the margin. This
leads to a quadratic, constrained optimisation problem:

. - . 1 2 . .
w,t = argmm;llwll' subjectto y;(w-x;—t)=1,1<i<n
w.i -

0,

% Adding the constraints with multiplierse: for each training example gives the
Lagrange Function
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1,5 &
Alw, t,ay,....a,) = 5|lw|l‘—Za,~(y,—(w-x;-t)—l)
i=1

Wooocon el - .
= Ellwll‘—Za.~y,~[\nr-x,»]+za,~_V.~!+Za'f
i=1 i=1 i=1
1 n L e
= Ew-w—w- Zai}'ixi +1 Zai."i +Z‘7f
i=1 i=1 i=1

¢ By taking the partial derivative of the Lagrange function with respect to t and setting

ril,aiyi=0.
it to 0 we find that for the optimal threshold t we have ~— o

+« Similarly, by taking the partial derivative of the Lagrange function W|th respect to w
we see that the Lagrange multipliers define the weight vector as a linear combination

of the training examples:

a a1 e
;‘——:\(w £y, . a,,)=a—“—-2- w———w (Z a,p,\,) w—i:Z]a,-y,-x,-

& Now, by plugging the expressions ' i=1@i)i=08andW=30, @YiXi ooy into the

Lagrangian we are able to eliminate w and t , and hence obtain the dual optimisation
problem, which is entirely formulated in terms of the Lagrange multipliers:

l n n n
Alay,..., an) = ~5 }:ai}’fxi)'(zai}’ixi)+zai
——ZZG a;iyiViXi: X}"‘Z,al

l]j

% The dual problem is to maximise this function under positivity constraints and one
equality constraint:
aj,...; -argmax-—ZZa a;yiyiXi+ x,+Za,

ar@n 2 im) =1 i=1

subjecttoa; =0,1<i<nand ) a;y;i=0
i=1
The following example makes these issues a bit more concrete by
showing detailed calculations on some toy data.
4.1Two maximum-margin classifiers and their support vectors: Let the data points and
labels be as follows:

1. 2 -1 -1 -2
X=| -1 2 y=| -1 = 1 -2
-1 -2 +1 -1 -2

The matrix X on the right incorporates the class labels; i.e., the rows are yi xi . The Gram
matrix is (without and with class labels):

5: & =5 53 5
xxXX=| 3 5 -3 XxT-| 3 5 3
SIS S 5 3 5

The dual optimisation problem is thus
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1
argmax—z (Sa% +3ayaz +5a,as +3aza; + Sag +3azas +5azay
ay,az,ag

+3a3az +5a3) + @1 +az +az

1
=argmax—— (5a] +6a,a, +10a, @3 +5a3 + 6a,as +5a3) + @) + @y +a;
al,az.aji

subject to a1l > 0,02 >0,a3 >0 and —al —a2 +o3 = 0.
Using the equality constraint we can eliminate one of the variables, say a3,
and simplify the objective function to

1
argmax—— (Saf +6ayaz +10a; (@) + az) +5a; + 6az(ay + az) +5(a) + ag)z)

aj,az,aj
+2a; +2a;
1
= argmax—— (20aj +32a, a, + 16a3) + 2a, +2a;
al,az,ail 2
2 1 2 ® 7
A=) - - e ///
/ @
. / ¢ 4
! o P 7
i / P
g
© 5 i @
3 3

Figure 7.8. (left) A maximum-margin classifier built from three examples, with w = (0,-1/2)
and margin 2. The circled examples are the support vectors: they receive non-zero Lagrange
multipliers and define the decision boundary. (right) By adding a second positive the decision
boundary is rotated to w= (3/5,—4/5) and the margin decreases to 1.
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Algorithm 7.3: PerceptronRegression(D, T) — train a perceptron for regression.

Input :labelled training data D in homogeneous coordinates;
maximum number of training epochs T.
Output : weight vector w defining function approximator y=w-x.
1 W—0; t—0;
2 while < T do
fori=1to|D|do
wew+ (i — ¥i)*xi;

w

end

LB L B

r—1t+1;

7 end

5. Soft margin SVM

1. If the data is not linearly separable, then the constraints w- xi — ¢ > 1 posed by the
examples are not jointly satisfiable. However, there is a very elegant way of adapting
the optimisation problem such that it admits a solution even in this case

2. The idea is to introduce slack variables &i , one for each example, which allow some
of them to be inside the margin or even at the wrong side of the decision boundary —
we will call these margin errors. Thus, we change the constraints to w- xi —t > 1-&i
and add the sum of all slack variables to the objective function to be minimised,
resulting in the following soft margin optimisation problem:

o 4o s ST
w,t =argmin—|jw]||*
w,i 2
subject to y;(w-x; — )= 1 and J1=i=n

C is a user-defined parameter trading off margin maximisation against slack variable
minimisation: a high value of C means that margin errors incur a high penalty, while
a low value permits more margin errors (possibly including misclassifications) in
order to achieve a large margin.

3. If we allow more margin errors we need fewer support vectors, hence C controls to
some extent the ‘complexity’ of the SVM and hence is often referred to as the
complexity parameter. It can be seen as a form of regularisation similar to that
discussed in the context of least-squares regression.

4. The Lagrange function is then as follows:

l 2 n
Alw,t.{,a;.0) = Ellwll‘ =) a;(yiw-x;—t)—(1-:)))

i=1

&

1 n n n
= ;w-w—w-(Zai}’ix.'J-*-f(ZGi}'i)'*'zai
i=1 i=1 i=1
= Alw,t,a;)

5. For an optimal solution every partial derivative with respect to & should be 0, from
which it follows that C —ai —pi = 0 for all i , and hence the added term vanishes from

the dual problem
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6. Obtaining probabilities from linear classifiers:

1. A linear classifier produces scores "s(xi ) =w:xi —¢ that are thresholded at 0 in order
to classify examples. Owing to the geometric nature of linear classifiers, such scores
can be used to obtain the (signed) distance of xi from the decision boundary

2. The length of the projection of xi onto w is ||xi ||cosd, where O is the angle between
xi and w. Since w- xi = ||w]| ||xi ||cos#, we can write this length as (w- xi )/||w]|. This
gives the following signed distance:

Sx;) wex;—t . L

= =W ‘X;—1

[lwi| [lwil

with w = w/||w]|| rescaled to unit length and t = t/||w]| the corresponding rescaled
intercept. The sign of this quantity tells us which side of the decision boundary we are
on: positive distances for points on the “positive’ side of the decision boundary
3. This geometric interpretation of the scores produced by linear classifiers offers an
interesting possibility for turning them into probabilities, a process that was called
calibration
Example: Suppose we now observe a point x with distance d(x). We classify this point as
positive if d(x) > 0 and as negative if d(x) < 0, but we want to attach a probability p“(x) =
P(&d(x)) to these predictions. Using Bayes’ rule we obtain

d(x;) =

P(d(x)|&)P(=) LR

P(2ld) = pri)P@) s P@I)PC) - LR 1dr

where LR is the likelihood ratio obtained from the normal score distributions, and clr is the

class ratio. We will assume for simplicity that clr = 1 in the derivation below. Furthermore,
o?=1landd =-d =1/2 _ o

assume for now that (we will relax this in a moment). We then

have

P(d(x)|e) _ exp(-(d(x)- 1/2)%/2)
P(d(x)|=)  exp(-(d(x)+1/2)2/2)
= exp(—(d(x) - 1/2)*/2+ (d(x) + 1/2)*/2) = exp (d(x))

LR=

and so

Pleld)) = 2R@X) _ _exp(w-x—1)
exp(d(x))+1 expw-x—1)+1

So, in order to obtain probability estimates from a linear classifier outputting distance

scores d, we convert d into a probability by means of the mapping dl — exp(d)/ exp(d)+1
(or, equivalently, d & 1/1+exp(—d) ). This S-shaped or sigmoid function is called the
logistic function; it finds applications in a wide range of areas

Suppose now that d =-d a5 pefore, but we do not assume anything
about the magnitude of these mean distances or of ¢2. In this case we have
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L 72 ATy
LR:exp( (d(x)-d )20:(d(X) d) )

z?fd(x)-(?)z-zﬁ d(x)+(§ )2

202

= exp = exp(yd(x))

witha= (? 7 )g®a scaling factor that rescales the weight vector so that the mean
distances per class are one unit of variance apart. In other words, by taking the scaling
factor y into account, we can drop our assumption that w is a unit vector.

. E’ andd ¢ .
If we also drop the assumption that are symmetric around the

decision boundary, then we obtain the most general form

_ Pldix)|®) _ 3
LR= PEARE) - exp(y(d(x) - do))
e e AT A iy 1®
de ’)d ___w(pqu)‘ d0=d +d =w(u +u)_t
o= og* 2 2

dy has the effect of moving the decision boundary from w-x =t tox= (u® + ' )/2,
that s, halfway between the two class means. The logistic mapping thus becomes d —
m. and the effect of the two parameters is visualised in Figure 7.11.

'/ —
552

\
AN\

Figure 7.11. The logistic function, a useful function for mapping distances from a linear deci-
sion boundary into an estimate of the positive posterior probability. The fat red line indicates
the standard logistic function p(d) = m; this function can be used to obtain probability
estimates if the two classes are equally prevalent and the class means are equidistant from the
decision boundary and one unit of variance apart. The steeper and flatter red lines show how
the function changes if the class means are 2 and 1/2 units of variance apart, respectively. The
three blue lines show how these curves change if dy = 1, which means that the positives are on

average further away from the decision boundary.
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5.1 Example: Logistic calibration of a linear classifier:

Logistic calibration has a particularly simple form for the basic linear classifier, which has w
= u@—u_. It follows that

E—}_E =‘\r.(u~_u )_”I—t-—u ”-_

— ==l
Wil We—pn B TH

and hence y = ||u® — p ||/o*. Furthermore, dy = 0 as (u* + p )/2 is already
on the decision boundary. So in this case logistic calibration does not move the

decision boundary, and only adjusts the steepness of the sigmoid according to the separation
of the classes.

7. Going beyond linearity with kernel methods:

It is customary to call the transformed space the feature space and the original space the input
space. The approach thus appears to be to transform the training data to feature space and
learn a model there. In order to classify new data we transform that to feature space as well
and apply the model.

Process: Take the perceptron algorithm in dual form. The algorithm is a simple counting
algorithm — the only operation that is somewhat involved is testing whether example Xxi is
viZ2 ajyxi
correctly classified by evaluating
X;. The key component of this calculation is the dot product x; -x;. Assuming bivariate
examples x; = (x;,y;) and x; = (x;, y;) for notational simplicity, the dot product can be
written as X; -X; = x; X; + y; ¥;. The corresponding instances in the quadratic feature
space are (x7,y?) and [113 xf) and their dot product is

(:2,12)- [r? Vz_) = a2 412y
2R i) TR T
This is almost equal to

(xi x;)? = (xixj + yiy;) = (ixj)? + (yiyi)* +2xi X} yi y;
but not quite because of the third term of cross-products. We can capture this term by
extending the feature vector with a third feature /2 xy. This gives the following feature
space:

R B 0 O ol
blx;)= (-‘i ViV 2x,-_v,-) b(x;) = [_‘j‘},j' vV2x;y;
Bx;)- Plx;) = xf.xi + ﬁyf +2X:%;y; ¥ = (x;-x;)

We now define k(x;,x;) = (x; -xj)z, and replace x; - x; with K(x;,X;) in the dual percep-
tron algorithm to obtain the kernel perceptron (Algorithm 7.4), which is able to learn
the kind of non-linear decision boundaries illustrated in Example 7.8.

The introduction of kernels opens up a whole range of possibilities. Clearly we can
define a polynomial kernel of any degree p as k(x;,x;) = (x; -x;)”. This transforms
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a d-dimensional input space into a high-dimensional feature space, such that each
new feature is a product of p terms (possibly repeated). If we include a constant, say
r(Xi Xj )= (xi-xj+1)p, we would get all lower-order terms as well. So, for example, in

a bivariate input space and setting p = 2 the resulting feature space is
b(x)= [x3 VAV 2xy,V2x,V/2y, 1)

with linear as well as quadratic features. But we are not restricted to polynomial kernels. An
often-used kernel is the Gaussian kernel, defined as

”

20°

—||x.~—x,u2)

r;(x,-.xj)zexp(

where ¢ is a parameter known as the bandwidth. To understand the Gaussian kernel a bit
better, notice that x(X,xX) = ¢(X) ‘p(X) = ||p(X)||2 for any kernel obeying a number of standard
properties referred to as ‘positive semi-definiteness’.

Algorithm 7.4: KernelPerceptron(D, k) — perceptron training algorithm using a
kernel.

Input :labelled training data D in homogeneous coordinates;

Output : coefficients a; defining non-linear decision boundary.
1 a;—0forl=i=<|Dj;
2 converged—false;
3 while converged = false do

4 converged—trus;

5 fori=1to|D]do

" if y; Z‘,.Iill a;yj <=0 then
7 a;—a;+1;

B converged—false;

9 end

10 end

11 end

Kernel methods are best known in combination with support vector machines. Notice that the
soft margin optimisation problem is defined in terms of dot products between training
instances and hence the ‘kernel trick’ can be applied:

n n n
al'.....a,’,zargmax—:)-z Y aia;yiy; +) a;
s e R S i=1
n
subjectto0=a;=Cand ) a;y;=0
i=1
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Probabilistic Models

1. Introduction:

1. Probability estimation tree attaches a class probability distribution to each leaf of the
tree, and each instance that gets filtered down to a particular leaf in a tree model is
labelled with that particular class distribution.

2. Similarly, a calibrated linear model translates the distance from the decision boundary
into a class probability. These are examples of what are called discriminative
probabilistic models. They model the posterior probability distribution P(Y |X), where
Y is the target variable and X are the features. That is, given X they return a
probability distribution over Y.

3. A. The other main class of probabilistic models are called generative models. They
model the joint distribution P(Y,X) of the target Y and the feature vector X. Once we
have access to this joint distribution we can derive any conditional or marginal
distribution involving the same variables.

B. In particular, since 7 = Z» F(¥ = x5
be obtained as

follows that the posterior distribution can

C. Alternatively, generative models can be described by the likelihood function
P(X]Y),since P(Y ,X) = P(X|Y )P(Y ) and the target or prior distribution can be easily
estimated or postulated. Such models are called ‘generative’ because we can sample
from the joint distribution to obtain new data points together with their labels.

D. Alternatively, we can use P(Y ) to sample a class and P(X|Y ) to sample an
instance for that class.

E. In contrast, a discriminative model such as a probability estimation tree or a linear
classifier models P(Y [X) but not P(X), and hence can be used to label data but not
generate it.

4. One of the most attractive features of the probabilistic perspective is that it allow us to
view learning as a process of reducing uncertainty. For instance, a uniform class prior tells
us that, before knowing anything about the instance to be classified, we are maximally
uncertain about which class to assign. If the posterior distribution after observing the
instance is less uniform, we have reduced our uncertainty in favour of one class or the
other.

5. The key point is that probabilities do not have to be interpreted as estimates of relative
frequencies, but can carry the more general meaning of (possibly subjective) degrees of
belief. we can attach a probability distribution to almost anything: not just features and
targets, but also model parameters and even models.

6. An important concept related to probabilistic models is Bayes-optimality. A classifier is
Bayes-optimal if it always assigns argmaxy Px(Y = y|X = X) to an instance x, where P
denotes the true posterior distribution.
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Ex: we can perform experiments with artificially generated data for which we have chosen
the true distribution ourselves: this allows us to experimentally evaluate how close the
performance of a model is to being Bayes-optimal.

Note: The derivation of a probabilistic learning method usually makes certain assumptions
about the true distribution, which allows us to prove theoretically that the model will be Bayes-
optimal provided these assumptions are met.

2. The normal distribution and its geometric interpretations:

1. We can draw a connection between probabilistic and geometric models by considering
probability distributions defined over Euclidean spaces. The most common such distributions
are normal distributions, also called “Gaussians™.

2. We start by considering the univariate, two-class case. Suppose the values of x € R follow
a mixture model: i.e., each class has its own probability distribution (a component of the
mixture model).

3. We will assume a Gaussian mixture model, which means that the components of the
mixture are both Gaussians. We thus have
x—pu r
a

L el 1 1
s N ] ) P(x|e)=— exp(-—
g Vono 2

1
P(xle)= — _exp(
Va2no*®

1

2

-4

Where,
ué and o are the mean and standard deviation for the positive class,
u - and o- are the mean and standard deviation for the negative class.

4. This gives the following likelihood ratio:
_P(x|®) o x—p® 2_ x—p> Y
K - ( o® ) ( o J

1
LR(x Xp [ ——
x) P(x|-) o% c\p( 2

Points to Remember:

a. The normal distribution describes a special class of such distribution that are symmetric
and can be described by the distribution mean, p and the standard deviation, ¢

b. A continuous random variable is said to be normally distributed with mean and variance if
its probability density function is:

x-p?) 1 (1
202 ):E“p{‘i

.\';p :)=%e.\‘p[—:2/2). E=\2nc

poes
P(xlu,o) = T ex
c. The distribution has two parameters: p, which is the mean or expected value, as well as the
median (i.e., the point where the area under the density function is split in half) and the mode
(i.e., the point where the density function reaches its maximum); and o, which is the standard
deviation and determines the width of the bell-shaped curve.
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d. z = (x /o is the z-score associated with x; it measures the number of standard deviations
between x and the mean (it has itself mean 0 and standard deviation 1). It follows that
P(x|p,0) = 1oP(z|0, 1), where P(z|0,1) denotes the standard normal distribution.

e. The multivariate normal distribution over d-vectors x = (x1, . .. ,xd )" € R%is

di2_ 5

1 1 To— .
P(xl;t..‘Z]=F—exp(—;(x—;.llli I(x—;:]). E;=(2m)"" “VIZ|
Ed 2

f. Lets first consider the case that both components have the same standard deviation, i.e., o

b =0 =o.

1 812 B o solbeumid ben 2y

_?Hx—p ) =(x—p )'|:_F X -2pt x4+t - (xT-2u x+p }]
=z |2 T = ‘]l
- [ pEp

g. The general form of the likelihood ratio can be derived from
."IZ | 1 B\ T ryey—1 ® T o |
LR = |75 exp —5 (6= ™) @) 7 =) = =) (@) - )]

where u@ and p_ are the class means, and X and X_ are the covariance matrices for
each class.

The ML decision boundary is a straight line at equal distances from the class means —
in which we recognise our old friend, the basic linear classifier! In other words, for
uncorrelated, unit-variance Gaussian features, the basic linear classifier is Bayes-optimal.

4. The multivariate normal distribution essentially translates distances into probabilities. This
becomes obvious when we plug the definition of Mahalanobis distance

| 1 2
P(x|p,X) = E—dexp( (I)is‘u(x,yIZ))')

-2
5. Similarly, the standard normal distribution translates Euclidean distances into probabilities:

P(x]0,1) = exp (-l (Dis, (x,on‘—’)

(27[)‘“2 2

6. Conversely, we see that the negative logarithm of the Gaussian likelihood can be
interpreted as a squared distance:

2

|
—InP(x|p,X)=InE; + = (Dispr(x, X))
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Case Studyl: suppose we want to estimate the mean u of a multivariate Gaussian
distribution with given covariance matrix X from a set of data points X. The principle of
maximum-likelihood estimation states that we should find the value of p that maximises the
joint likelihood of X.

1. Assuming that the elements of X were independently sampled, the joint likelihood
decomposes into a product over the individual data points in X, and the maximum-likelihood
estimate can be found as follows:

fu=argmax [ | P(xlu,X)

H xeX
1 1 2

=argmax [ | —exp (—— (DisM(x.ulZ))“)

K xex td 2

1

=argmin ) |InEg + > (Disy(x, [JIZ))2’

KH o xeX .
=argmin ) _ (Dism(x, plx))’

B XeX

2. We thus find that the maximum-likelihood estimate of the mean of a multivariate
distribution is the point that minimises the total squared Mahalanobis distance to all points in
X.

Case Study2: (least-squares solution to a linear regression problem):

1. The starting point is the assumption that our training examples (hiyi) are noisy
measurements of true function points (xi , f (xi )): i.e., yi = f (Xi )*€i , where the €i are
independently and identically distributed errors.

2. We want to derive the maximum-likelihood estimates " yi of f (xi). We can derive this if we
assume a particular noise distribution, for example Gaussian with variance o?. It then follows
that each yiis normally distributed with mean a +bxi and variance 7, and thus

2y _
P(.Vilavbva )_ 202

( (yi—(a+bxf))2)
——exp|-
V2no?

3. Taking the partial derivatives with respect to a, b and 62 and setting to zero in order to
maximise the negative log likelihood gives the following three equations:

n

Z yi—(a+bx;) =0

i=1

n
(vi—(a+bx))xi=0

i=1

nl Z:’:] (yi—(a+ b.\f,~))2 B

2 g2 2(02)2
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A good probabilistic treatment of a machine learning problem achieves a balance
between solid theoretical foundations and the pragmatism required to obtain a workable
solution.

3. Probabilistic models for categorical data:

1. Categorical variables or features (also called discrete or nominal) are ubiquitous in
machine learning.

2. The most common form of the Bernoulli distribution models whether or not a word occurs
in a document. That is, for the i -th word in our vocabulary we have a random variable Xi
governed by a Bernoulli distribution. The joint distribution over the bit vector X = (X1, . ..
,Xk ) is called a multivariate Bernoulli distribution.

3. Variables with more than two outcomes are also common: for example, every word
position in an e-mail corresponds to a categorical variable with k outcomes, where k is the
size of the vocabulary.

4. The multinomial distribution manifests itself as a count vector: a histogram of the number
of occurrences of all vocabulary words in a document.

5. This establishes an alternative way of modelling text documents that allows the number of
occurrences of a word to influence the classification of a document.

6. In the multinomial document model, this follows from the very use of the multinomial
distribution, which assumes that words at different word positions are drawn independently
from the same categorical distribution.

7. In the multivariate Bernoulli model we assume that the bits in a bit vector are statistically
independent, which allows us to compute the joint probability of a particular bit vector (x1, . .
. ,xk ) as the product of the probabilities of each component P(Xi = xi ).

Using a naive Bayes model for classification:

The more different these two distributions are, the more useful the features X are for
classification. Thus, for a specific e-mail x we calculate both P(X = x|Y = spam) and P(X =
X|Y =ham), and apply one of several possible decision rules:

maximum likelihood (ML) — predict argmax,, P(X = x|Y = y);
maximum a posteriori (MAP) - predictargmax, P(X = x|Y = y)P(Y = y);

recalibrated likelihood — predict argmax,, w, P(X = x|Y = y).
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Example 9.4 (Prediction using a nalve Bayes model). Suppose our vocabulary
contains three words a, b and ¢, and we use a multivariate Bernoulll model for
our e-malls, with parameters

% = (0.5,0.67,0.33) @ =(0.67,0.33,0.33)

This means, for example, that the presence of b Is twice as likely In spam (+),
compared with ham.

The e-mall to be classified contains words a and b but not ¢, and hence 1s
described by the bit vector x = (1, 1,0}. We obtain likelthoods

P(xj®)=0.5-0.67-(1-0.33) = 0.222 P(x|")=0.67-033-(1-0.33)=0.148

The ML classification of x is thus spam. In the case of two classes It Is often conve-
nient to work with likelthood ratios and odds. The likelthood ratio can be calcu-
lated as ;‘rﬁi’r = fey 195 = 3/2> 1. This means that the MAP classtfication
of x is also spam If the prior odds are more than 2/3, but ham If they are less than
that. For example, with 33% spam and 67% ham the prior odds are 7~ = §5 =
1/2, resulting In a postertor odds of 524 = FE=E= =3/2.1/2=3/4<1. In
this case the likelthood ratio for x is not strong enough to push the deciston away
from the prior.

Alternatively, we can employ a multinomial model. The parameters of a

multinomial establish a distribution over the words in the vocabulary, say

6% =(0.3,0.5,0.2) g =(06,0.2,02)

The e-mall to be classified contains three occurrences of word a, one single oc-
currence of word b and no occurrences of word ¢, and hence 1s described by the
count vector x = (3,1,0). The total number of vocabulary word occurrences 1s
n = 4. We obtain likelthoods
- PN A 0 R
03705 0.2 06”02 02
=== =g =
P(x|e) =4 e 0.054 Pix|]-)=4 S 0.1728

The likelthood ratto 1s (22)” (83)" (33)° = 5/16. The ML classtfication of x is thus
ham, the opposite of the multivariate Bernoulll model. This is mainly because of
the three occurrences of word a, which provide strong evidence for ham.

Page 6

www.jntufastupdates.com



http://www.jntufastupdates.com/

Machine Learning Notes Unit-5 Probabilistic Models

Observation:

Notice how the likelihood ratio for the multivariate Bernoulli model is a product of
factors 0‘? /"Ol. if x; = 1 in the bit vector to be classified, and (1 — 61'?‘]/(1 - ()‘. )if x; = 0.

> One consequence of this is that the multinomial model only takes the presence of
words into account, whereas in the multivariate Bernoulli model absent words can
make a difference. In the previous example, not containing word b corresponds to a
factor of (1-0.67)/(1-0.33) = 1/2 in the likelihood ratio.

> The other main difference between the two models is that multiple occurrences of
words are treated like duplicated features in the multinomial model, through the
exponential ‘weight’ xi .

4. Training a naive Bayes model:

Training a probabilistic model usually involves estimating the parameters of the distributions
used in the model. The parameter of a Bernoulli distribution can be estimated by counting the
number of successes d in n trials and setting "0 = d/n. In other words, we count, for each
class, how many e-mails contain the word in question. Such relative frequency estimates are
usually smoothed by including pseudocounts, representing the outcome of virtual trials
according to some fixed distributions.

In the case of a Bernoulli distribution the most common smoothing operation is the
Laplace correction, which involves two virtual trials, one of which results in success and the
other in failure. Consequently, the relative frequency estimate is changed to (d +1)/(n +2).

From a Bayesian perspective this amounts to adopting a uniform prior, representing
our initial belief that success and failure are equally likely. If appropriate, we can strengthen
the influence of the prior by including a larger number of virtual trials, which means that
more data is needed to move the estimate away from the prior.

For a categorical distribution smoothing adds one pseudo-count to each of the k
categories, leading to the smoothed estimate (d +1)/(n +k). The m-estimate generalises this
further by making both the total number of pseudo-counts m and the way they are distributed
over the categories into parameters. The estimate for the i -th category is defined as (d
+pim)/(n+m), where pi is a distribution over the categories

Example:

We now show how the parameter vectors in the previous example might have been obtained.
Consider the following e-mails consisting of five words a, b, ¢, d, e:

el:bdebbde
e2:bcebbddecc
e3:adadeacee
ed:badbedab
edSiabababaed

eb:acacacaed
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e/l:eaedaea
e8:deded

We are told that the e-mails on the left are spam and those on the right are ham, and
so we use them as a small training set to train our Bayesian classifier. First, we decide that d
and e are so-called stop words that are too common to convey class information. The
remaining words, a, b and c, constitute our vocabulary. For the multinomial model, we
represent each e-mail as a count vector, as in Table

E-mail #a #b #c Class

(3]
é»

€3

+ + + +

€4
€5
€5

L? -

S W s N WO O

O O O W W o W W

O O W o O o Wo
|

€y

In order to estimate the parameters of the multinomial, we sum up the count vectors
for each class, which gives (5, 9,3) for spam and (11,3,3) for ham. To smooth these
probability estimates we add one pseudo-count for each vocabulary word, which brings the
total number of occurrences of vocabulary words to 20 for each class. The estimated
parameter vectors are thus °@ = (6/20,10/20,4/20) = (0.3,0.5,0.2) for spam and #"_ =
(12/20,4/20,4/20) = (0.6, 0.2,0.2) for ham.

In the multivariate Bernoulli model e-mails are represented by bit vectors, as in Table

E-mail a? Bb? ¢? Class
e 0 1 0 -
e 0 1 1 -
e 1 0 0 -
€4 1 1 0 -
és 1 1 0 -
eg 1 0 1 -
ez 1 0 0 -
ey 0 0 0 -

Adding the bit vectors for each class results in (2, 3,1) for spam and (3, 1,1) for ham. Each
count is to be divided by the number of documents in a class, in order to get an estimate of
the probability of a document containing a particular vocabulary word. Probability smoothing
now means adding two pseudo-documents, one containing each word and one containing
none of them. This results in the estimated parameter vectors 8°@ = (3/6,4/6,2/6) =
(0.5,0.67,0.33) for spam and @"_ = (4/6,2/6,2/6) = (0.67,0.33,0.33) for ham.
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Observation: ‘the’ naive Bayes classifier employs neither a multinomial nor a multivariate
Bernoulli model, but rather a multivariate categorical model. This means that features are
categorical, and the probability of the i -th feature taking on its 1 -th value for class c

examples is given by 6%, , under the constraint that L0 =1 where ki s the number of
values of the i -th feature. These parameters can be estimated by smoothed relative
frequencies in the training set, as in the multivariate Bernoulli case. We again have that the
joint probability of the feature vector is the product of the individual feature probabilities, and
hence P(Fi ,Fj |C) = P(Fi |C)P(Fj |C) for all pairs of features and for all classes.

Summary: The naive Bayes model is a popular model for dealing with textual, categorical
and mixed categorical/real-valued data. Its main shortcoming as a probabilistic model —
poorly calibrated probability estimates — are outweighed by generally good ranking
performance. Another apparent paradox with naive Bayes is that it isn’t particularly Bayesian
at all! For one thing, we have seen that the poor probability estimates necessitate the use of
reweighted likelihoods, which avoids using Bayes’ rule altogether. Secondly, in training a
naive Bayes model we use maximum-likelihood parameter estimation, whereas a fully
fledged Bayesian approach would not commit to a particular parameter value, but rather
employ a full posterior distribution.

5. Discriminative learning by optimising conditional likelihood:

The easiest way to understand logistic regression is as a linear classifier whose probability
estimates have been logistically calibrated, but with one crucial difference: calibration is an
integral part of the training algorithm, rather than a post-processing step. While in generative
models the decision boundary is a by-product of modelling the distributions of each class,
logistic regression models the decision boundary directly.

For example, if the classes are overlapping then logistic regression will tend to locate the
decision boundary in an area where classes are maximally overlapping, regardless of the
‘shapes’ of the samples of each class.

the likelihood ratio as &P(dX)=do)] with d(x) = w- x - t . Since we are leamning the

parameters all at once in discriminative learning, we can absorb y and dO into w and t . So the
logistic regression model is simply given by

exp(w-x—1) 1

px)= = : :
expw-x—1t)+1 l1+exp(—(w-x—1))

Assuming the class labels are y = 1 for positives and y = 0 for negatives, this defines a
Bernoulli distribution for each training example:

P(y;Ix;) = px;)% (1 - p(x;)) =¥

It is important to note that the parameters of these Bernoulli distributions are linked through
w and t, and consequently there is one parameter for every feature dimension, rather than for
every training instance. The likelihood function is

CL(w, 1) =[] Pyilxa) =[] plxa) ¥ (1 - pixi)) =2
i i
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This is called conditional likelihood to stress that it gives us the conditional probability P(yi
|xi ) rather than P(xi ) as in a generative model. Notice that our use of the product requires the
assumption that the y-values are independent given X; but this is an entirely reasonable
assumption and not nearly as strong as the naive Bayes assumption of x being independent
within each class. the logarithm of the likelihood function is easier to work with:

LCL(w, )= ) yilnp(x;) +(1-y)In(1-pix;)) = Y Inpx®)+ Y In(l-px )

xPe 118 x elr
6. Probabilistic models with hidden variables:

Suppose you are dealing with a four-class classification problem with classes A, B, C and D.
If you have a sufficiently large and representative training sample of size n, you can use the
relative frequencies in the sample n4, . . . ,nD to estimate the class prior p"A = nA/n, ... ,pD
=np/n

6.1. Expectation-Maximisation:

¢+ the expectation E[Z|X,0'] of the hidden variables given the observed variables
and the current estimate of the parameters (so in Equation 9.6 the expectations
of a and b depend on s and f);

¢+ thelikelihood P(Y0), which is used to find the maximising value of .

: - E - .

This means that we really want to maximise P(XU“[ZIX'H ]|0), or equivalently, the
logarithm of that function. We now make the assumption that the logarithm of the likelihood
function is linear in Y : notice that this assumption is valid in the example above. For any

linear function f, FEIZD=E[f(2)]
objective function:

and thus we can bring the expectation outside in our

InP(Xu 10)=F InP(Xu 7|6) =E[InP(Y[0)IX,0"]

This last expression is usually denoted as Q(8]6t ), as it essentially tells us how to calculate
the next value of 6 from the current one:

0'*! = argmaxQ(010") = argmaxE [In P(Y10)| X, 6]
o 0

the general form of the celebrated Expectation-Maximisation (EM) algorithm, which is a
powerful approach to probabilistic modelling with hidden variables or missing data. Similar
to the example above, we iterate over assigning an expected value to the hidden variables
given our current estimates of the parameters, and re-estimating the parameters from these
updated expectations, until a stationary configuration is reached.

6.2. Gaussian mixture models

A common application of Expectation-Maximisation is to estimate the parameters of a
Gaussian mixture model from data. In such a model the data points are generated by K
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normal distributions, each with their own mean gj and covariance matrix Xj , and the
proportion of points coming from each Gaussian is governed by a prior = = (t1, ... ,tTK ). If
each data point in a sample were labelled with the index of the Gaussian it came from this
would be a straightforward classification problem, which could be solved easily by
estimating each Gaussian’s gj and Xj separately from the data points belonging to class j .

A convenient way to model this is to have for each data point xi a Boolean vector zi =
(zil, . .., ziK ) such that exactly one bit zi j is set to 1 and the rest set to 0, signalling that the i
-th data point comes from the j -th Gaussian. Using this notation we can adapt the expression
for the multivariate normal distribution to obtain a general expression for a Gaussian mixture
model:

1 1
P(x;,2;10) = — exp|-——x—p )T E X - )
i Zj (27T)d/2\,/—_—lzj| P 5 Xi Hj j XKi— ]

Here, 6 collects all the parameters <, g1, . . . ,uK and X1, ... XK . The interpretation as a
generative model is as follows: we first randomly select a Gaussian using the prior = , and
then we invoke the corresponding Gaussian using the indicator variables zi j . In order to
apply Expectation-Maximisation we form the Q function:

Q10" =E[InP(XUZI|O)IX,0']

n
=E|{In]] Px; uz,—l())}X.O"

i=1

n
=F| X lnP(x,-uz,-IB)‘X,O’}

i=1

=E| ) In |X.0r

1 Pl _
Ti—————exp|—=X;—pj) Z; (X;— 1')) X, 0 *)
— ( ](zmd/g\/.lzjl P( S Xi— ) & Ki— g )‘ ‘

K
€| % %2 |

- d 1 L. Ty -1
=) Y (Inrj—E]n(Zn)—Eln[Zjl—E(x;—,uj) z; (x,-—pj))

The last line shows the Q function in the desired form, involving on the one hand
expectations over the hidden

variables conditioned on the observable data X and the previously estimated parameters ot |,
and on the other hand expressions in 6 that allow us to find 6t+1 by maximisation. In the
general case these expectations are apportioned proportionally to the probability mass
assigned to the point by each Gaussian:
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t rolast L
ij(xlllljvzj)

E[z;;|X,0']| = —
2% 0= o T Ft, =D

where f (X|g,X) stands for the multivariate Gaussian density function.
6.3. Compression-based models
Consider the maximum a posteriori decision rule again:

ymap=argmaxP(X=x|Y = y)P(Y =y)
1y
Taking negative logarithms, we can turn this into an equivalent minimisation:

ymap = argmin—log P(X = x|Y = y)—logP(Y = y)
y

This follows because for any two probabilities 0 < p < p < 1 we have o > -logp > -logp >
0. If an event has probability p of happening, the negative logarithm of p quantifies the
information content of the message that the event has indeed happened. This makes intuitive
sense, as the less expected an event is, the more information an announcement of the event
contains. The unit of information depends on the base of the logarithm: it is customary to take
logarit;:hms to the base 2, in which case information is measured in bits.

for a uniform distribution over k outcomes, each outcome has the same information
content -log2 1/k = log2 k. For a non-uniform distribution these information contents differ,
and hence it makes sense to compute the average information content or entropy

Ti—pilog, pi
Minimum description length principle:

Let L(m) denote the length in bits of a description of model m, and let L(D|m) denote the
length in bits of a description of data D given model m. According to the minimum
description length principle, the preferred model is the one minimising the description length
of model and data given model:

mypr. = argmin (L(m) + L(D|m))
meM

‘description of data given model’ refers to whatever information we need, in addition to the
model and the feature values of the data, to infer the target labels. If the model is 100%
accurate no further information is needed, so this term essentially quantifies the extent to
which the model is incorrect.

The term L(m) quantifies the complexity of the model. For instance, if we are fitting a
polynomial to the data we need to encode the degree of the polynomial as well as its roots, up
to a certain resolution. MDL learning thus trades off accuracy and complexity of a model: the
complexity term serves to avoid overfitting in a similar way to the regularisation term in
ridge regression and the slack variable term in soft-margin SVMs
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7. Features:

Features are ‘the workhorses of machine learning’ — it is therefore high time to consider them
in more detail. Features, also called attributes, are defined as mappings fi :X —Fi from the
instance spaceX to the feature domain, Fi.

7.1. Kinds of feature

Consider two features, one describing a person’s age and the other their house number. Both
features map into the integers, but the way we use those features can be quite different.
Calculating the average age of a group of people is meaningful, but an average house number
is probably not very useful! In other words, what matters is not just the domain of a feature,
but also the range of permissible operations. These, in turn, depend on whether the feature
values are expressed on a meaningful scale. Despite appearances, house numbers are not
really integers but ordinals

7.2. Calculations on features

Three main categories are statistics of central tendency, statistics of dispersion and shape
statistics. Each of these can be interpreted either as a theoretical property of an unknown
population or a concrete property of a given sample, here we will concentrate on sample
statistics.

A. Starting with statistics of central tendency, the most important ones are

% the mean or average value;

% the median, which is the middle value if we order the instances from lowest to highest
feature value; and

% the mode, which is the majority value or values.

B. The second kind of calculation on features are statistics of dispersion or ‘spread’. Two well-
known statistics of dispersion are the variance or average squared deviation from the
(arithmetic) mean, and its square root, the standard deviation. Variance and standard
deviation essentially measure the same thing, but the latter has the advantage that it is
expressed on the same scale as the feature itself.

A simpler dispersion statistic is the difference between maximum and
minimum value, which is called the range. A natural statistic of central tendency to be
used with the range is the midrange point, which is the mean of the two extreme
values. These definitions assume a linear scale but can be adapted to other scales
using suitable transformations.

Other statistics of dispersion include percentiles. The p-th percentile is the value such
that p per cent of the instances fall below it. If we have 100 instances, the 80th percentile is
the value of the 81st instance in a list of increasing values.2 If p is a multiple of 25 the
percentiles are also called quartiles, and if it is a multiple of 10 the percentiles are also called
deciles. Note that the 50th percentile, the 5th decile and the second quartile are all the same
as the median. Percentiles, deciles and quartiles are special cases of quantiles. Once we have
quantiles we can measure dispersion as the distance between different quantiles. For instance,
the interquartile range is the difference between the third and first quartile (i.e., the 75th and
25th percentile).
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One advantage of drawing the plot this way is that, by interpreting the y-axis as probabilities,
the plot can be read as a cumulative probability distribution: a plot of P(X < x) against x for a
random variable X.

C. The skew and ‘peakedness’ of a distribution can be measured by shape statistics such as
skewness and kurtosis. The main idea is to calculate the third and fourth central moment of
the sample. In general, the k-th central moment of a sample {xi, . . . ,xn} is defined as
_1lvn ST
M= 5 Ly K= 1) where p is the sample mean.
Skewness is then defined as m3/03, where o is the sample’s standard deviation. A positive
value of skewness means that the distribution is right-skewed, which means that the right tail
is longer than the left tail. Negative skewness indicates the opposite, left-skewed case.
Kurtosis is defined as m4/c4.

Kind Order Scale Tendency Dispersion Shape
Categorical x X mode n/a n/a
Ordinal v x median quantiles n/a
Quantitative v v mean range, interquartile range, skewness,

variance, standard deviation  kurtosis

Given these various statistics we can distinguish three main kinds of feature: those with a
meaningful numerical scale, those without a scale but with an ordering, and those without
either. We will call features of the first type quantitative; they most often involve a mapping
into the reals (another term in common use is ‘continuous’). Even if a feature maps into a
subset of the reals, such as age expressed in years, the various statistics such as mean or
standard deviation still require the full scale of the reals.

Features with an ordering but without scale are called ordinal features. The domain of
an ordinal feature is some totally ordered set, such as the set of characters or strings. Even if
the domain of a feature is the set of integers, denoting the feature as ordinal means that we
have to dispense with the scale, as we did with house numbers. Another common example are
features that express a rank order: first, second, third, and so
on. Ordinal features allow the mode and median as central tendency statistics, and quantiles
as dispersion statistics. Features without ordering or scale are called categorical features (or
sometimes ‘nominal’ features). They do not allow any statistical summary except the mode.
One subspecies of the categorical features is the Boolean feature, which maps into the truth
values true and false

7.3. Structured features:

The instance space is a Cartesian product of d feature domains: X =F1 x. . .xFd . This means
that there is no other information available about an instance apart from the information
conveyed by its feature values. Identifying an instance with its vector of feature values is
what computer scientists call an abstraction, which is the result of filtering out unnecessary
information. Representing an e-mail as a vector of word frequencies is an example of an
abstraction. However, sometimes it is necessary to avoid such abstractions, and to keep more
information about an instance than can be captured by a finite vector of feature values. For
example, we could represent an e-mail as a long string; or as a sequence of words and
punctuation marks; or as a tree that captures the HTML mark-up; and so on. Features that
operate on such structured instance spaces are called structured features.
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Structured features can be constructed either prior to learning a model, or
simultaneously with it. The first scenario is often called propositionalisation because the
features can be seen as a translation from first-order logic to propositional logic without local
variables.

8. Feature transformations

Feature transformations aim at improving the utility of a feature by removing, changing or
adding information. We could order feature types by the amount of detail they convey:
quantitative features are more detailed than ordinal ones, followed by categorical features,
and finally Boolean features. The best-known feature transformations are those that turn a
feature of one type into another of the next type down this list. But there are also
transformations that change the scale of quantitative features, or add a scale (or order) to
ordinal, categorical and Boolean features

| to, from —  Quantitative Ordinal Categorical ~ Boolean
Quantitative normalisation calibration calibration calibration
Ordinal discretisation  ordering ordering ordering
Categorical  discretisation nordering grouping

Boolean thresholding thresholding ‘

Table 10.2. An overview of possible feature transformations. Normalisation and calibration
adapt the scale of quantitative features, or add a scale to features that don't have one. Ordering
adds or adapts the order of feature values without reference to a scale. The other operations
abstract away from unnecessary detail, either in a deductive way (unordering, binarisation) or
by introducing new information (thresholding, discretisation).

The simplest feature transformations are entirely deductive, in the sense that they
achieve a well-defined result that doesn’t require making any choices. Binarisation
transforms a categorical feature into a set of Boolean features, one for each value of the
categorical feature. This loses information since the values of a single categorical feature are
mutually exclusive, but is sometimes needed if a model cannot handle more than two feature
values. Unordering trivially turns an ordinal feature into a categorical one by discarding the
ordering of the feature values.

8.1. Thresholding and discretisation

Thresholding transforms a quantitative or an ordinal feature into a Boolean feature by
finding a feature value to split on. Concretely, let f : X —»R be a quantitative feature and let t
oR be a threshold, then ft: X — {true, false} is a Boolean feature defined by ft (x) = true if f
(x) =tand ft (x) =false if f (x) <t.

unsupervised thresholding typically involves calculating some statistic over the data,
whereas supervised thresholding requires sorting the data on the feature value and traversing
down this ordering to optimise a particular objective function such as information gain. If we
generalise thresholding to multiple thresholds we arrive at one of the most commonly used non-
deductive feature transformations. Discretisation transforms a quantitative feature into an
ordinal feature. Each ordinal value is referred to as a bin and corresponds to an interval of the
original quantitative feature. Again, we can distinguish between supervised and unsupervised
approaches. Unsupervised discretisation methods typically require one to decide the number
of bins beforehand. A simple method that often works reasonably well is
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to choose the bins so that each bin has approximately the same number of instances: this is
referred to as equal-frequency discretisation.

supervised discretisation methods, we can distinguish between top-down or divisive
discretisation methods on the one hand, and bottom-up or agglomerative discretisation
methods on the other. Divisive methods work by progressively splitting bins, whereas
agglomerative methods proceed by initially assigning each instance to its own bin and
successively merging bins. In either case an important role is played by the stopping
criterion, which decides whether a further split or merge is worthwhile. We give an example
of each strategy. A natural generalisation of thresholding leads to a top—down recursive
partitioning algorithm (Algorithm 10.1). This discretisation algorithm finds the best threshold
according to some scoring function Q, and proceeds to recursively split the left and right bins.
One scoring function that is often used is information gain.

Algorithm 10.1: RecPart(S, f, Q) —supervised discretisation by means of recursive
partitioning.

Input :setoflabelled instances S ranked on feature values f(x); scoring
function Q.
Output :sequence of thresholds f,,..., f;_;.
1 if stopping criterion applies then return &;
2 Split Sinto S; and S, using threshold ¢ that optimises Q ;
3 T;=RecPart(S;, f,Q);
4 T, =RecPart(S,, f,Q);
5 return Tju {tiu T;;

An algorithm for bottom-up agglomerative merging is given in
Algorithm 10.2. Again the algorithm can take various choices for the scoring function and the
stopping criterion: a popular choice is to use the x2 statistic for both.

Algorithm 10.2: AggloMerge(S, f, Q) — supervised discretisation by means of ag-
glomerative merging.

Input :setoflabelled instances S ranked on feature values f(x); scoring
function Q.
Output :sequence of thresholds.
1 initialise bins to data points with the same scores;
2 merge consecutive pure bins; /1 optional optimisation
3 repeat
4 evaluate Q on consecutive bin pairs;
5 merge the pairs with best Q (unless they invoke the stopping criterion);
6 until no further merges are possible;

~J

return thresholds between bins;
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In agglomerative discretisation the stopping criterion usually takes the form of a simple
threshold on the scoring function. In the case of the x2 statistic, the threshold can be derived
from the p-value associated with the x2 distribution, which is the probability of observing a
x2 value above the threshold if the two variables are actually independent.

8.3 Normalisation and calibration

Thresholding and discretisation are feature transformations that remove the scale of a
quantitative feature. Feature normalisation is often required to neutralise the effect of
different quantitative features being measured on different scales. If the features are
approximately normally distributed, we can convert them into z-scores by centring on the
mean and dividing by the standard deviation. In certain cases it is mathematically more
convenient to divide by the variance. Sometimes feature normalisation is understood in the
stricter sense of expressing the feature on a [0,1] scale. This can be achieved in various ways.
If we know the feature’s highest and lowest values h and 1, then we can simply apply the
linear scaling f _— ( f -1)/(h -1 ). We sometimes have to guess the value of h or I, and
truncate any value outside [1,h].

Feature calibration is understood as a supervised feature transformation
adding a meaningful scale carrying class information to arbitrary features. This has a number
of important advantages. For instance, it allows models that require scale, such as linear
classifiers, to handle categorical and ordinal features. It also allows the learning algorithm to
choose whether to treat a feature as categorical, ordinal or quantitative. This has the
additional advantage that models that are based on such probabilities, such as naive Bayes, do
not require any additional training once the features are calibrated. Ordinal and quantitative
features can be discretised and then calibrated as categorical features. A calibrated weight
feature attaches a probability to every weight, such that these probabilities are non-decreasing
with weight. Assuming the feature is normally distributed within each class with the same
variance, we can express the likelihood ratio of a feature value v as

_ P(vl®) _ —(v—u®P+(v—p )2)
LR(v)= Pol )_ex ( 252
:exp(“_ — U p—(p‘;p Nz):cxp(d’z]

d=W*-u)lo _ : _
where .. is the difference between the means in proportion to the standard
deviation, which is known as d-prime in signal detection theory; we obtain the calibrated

feature value as
- = d,Z X
Fo(x) = LR(F(x)) _ exp (d'z(x))
1+LR(F(x)) 1+exp(d'z(x))
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In essence, logistic feature calibration performs the following steps.
1. Estimate the class means u® and y and the standard deviation o.

2. Transform F(x) into z-scores z(x), making sure to use pu = (u® +pu ))/2 as the
feature mean.

3. Rescale the z-scores to F(x) = d'z(x) withd’ = (u* —p )/o.

4. Apply a sigmoidal transformation to F4(x) to give calibrated probabilities

FC(x) = exp(Fd(.r]!

1+exp(Fd(x))”

isotonic calibration, a method that requires order but ignores scale and can be applied
to both ordinal and quantitative features. We essentially use the feature as a univariate ranker,
and construct its ROC curve and convex hull to obtain a piecewise-constant calibration map.
isotonic feature calibration performs the following steps.

1. Sort the training instances on feature value and construct the ROC curve. The
sort order is chosen such that the ROC curve has AUC = 1/2.

2. Construct the convex hull of this curve, and count the number of positives m;
and the total number of instances n; in each segment of the convex hull.

3. Discretise the feature according to the convex hull segments, and associate a cal-

. , TR ,"i+l
ibrated feature value v} = F—r—557

r with each segment.

C
L
!l

4. If an additive scale is required, use u? =Ine=Invf —In(1-v}).

8.4. Incomplete features

Probabilistic models handle this rather gracefully by taking a weighted average over all
possible values of the feature:

P(YIX)=) P(Y,Z=2zX)=) P(YIX,Z=2)P(Z=2)

Here, Y is the target variable as usual, X stands for the features that are observed for the
instance to be classified, while Z are the features that are unobserved at classification time.
The distribution P(Z) can be obtained from the trained model, at least for a generative model
— if our model isdiscriminative we need to estimate P(Z) separately.

Missing feature values at training time are trickier to handle. First of all, the
very fact that a feature value is missing may be correlated with the target variable. For
example, the range of medical tests carried out on a patient is likely to depend on their
medical history. For such features it may be best to have a designated ‘missing’ value so that,
for instance, a tree model can split on it. However, this would not work for, say, a linear
model. In such cases we can complete the feature by ‘filling in’ the missing values, a process
known as imputation.
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9. Feature construction and selection

we can construct a new feature from two Boolean or categorical features by forming their
Cartesian product. For example, if we have one feature Shape with values Circle, Triangle
and Square, and another feature Colour with values Red, Green and Blue, then their Cartesian
product would be the feature (Shape,Colour) with values (Circle,Red), (Circle,Green),
(Circle,Blue), (Triangle,Red), and so on. The effect that this would have depends on the
model being trained. Constructing Cartesian product features for a naive Bayes classifier
means that the two original features are no longer treated as independent, and so this reduces
the strong bias that naive Bayes models have. This is not the case for tree models, which can
already distinguish between all possible pairs of feature values. On the other hand, a newly
introduced Cartesian product feature may incur a high information gain, so it can possibly
affect the model learned.

There are many other ways of combining features. One attractive possibility is to first
apply concept learning or subgroup discovery, and then use these concepts or subgroups as
new Boolean features. Once we have constructed new features it is often a good idea to select
a suitable subset of them prior to learning. Not only will this speed up learning as fewer
candidate features need to be considered, it also helps to guard against overfitting. There are
two main approaches to feature selection. The filter approach scores features on a particular
metric and the top-scoring features are selected. Many of the metrics we have seen so far can
be used for feature scoring, including information gain, the x2 statistic, the correlation
coefficient, to name just a few. An interesting variation is provided by the Relief feature
selection method, which repeatedly samples a random instance x and finds its nearest hit h
(instance of the same class) as well as its nearest miss m (instance of opposite class). The i -th
feature’s score is then decreased by Dis(xi ,hi )2 and increased by Dis(xi ,mi )2, where Dis is
some distance measure (e.g., Euclidean distance for quantitative features, Hamming distance
for categorical features). The intuition is that we want to move closer to the nearest hit while
differentiating from the nearest miss.

One of the best-known algebraic feature construction methods is principal
component analysis (PCA). Principal components are new features constructed as linear
combinations of the given features. The first principal component is given by the direction of
maximum variance in the data; the second principal component is the direction of maximum
variance orthogonal to the first component, and so on. PCA can be explained in a number of
different ways: here, we will derive it by means of the singular value decomposition (SVD).
Any n-by-d matrix can be uniquely written as a product of three matrices with special

 X=UuxVf
properties:

Here, U is an n-by-r matrix, X is an r -by-r matrix and V is an d-by-r matrix
(for the moment we will assume r = d < n). Furthermore, U and V are orthogonal (hence
rotations) and X is diagonal (hence a scaling). The columns of U and V are known as the left
and right singular vectors, respectively; and the values on the diagonal of X are the
corresponding singular values. It is customary to order the columns of V and U so that the
singular values are decreasing from top-left to bottom-right.

Now, consider the n-by-r matrix W= UZ, and notice that XV = UXVTV = UX =W
by the orthogonality of V. In other words, we can construct W from X by means of the
transformation V: this is the reformulation of X in terms of its principal components. The
newly constructed features are found inUX: the first rowis the first principal component, the
second row is the second principal component, and so on. These principal components have a
geometric interpretation as the directions in which X has largest, second-largest, . . . variance.
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Assuming the data is zero-centred, these directions can be brought out by a combination of
rotation and scaling, which is exactly what PCA does. We can also use SVD to rewrite the
scatter matrix in a standard form:

s=X"X= (UzV")’ (uzV") = (vZuT) (UzV") = v=2VT

This is known as the eigen decomposition of the matrix S: the columns of V are the
eigenvectors of S, and the elements on the diagonal of X — which is itself a diagonal matrix —
are the eigen values. The right singular vectors of the data matrix X are the eigenvectors of
the scatter matrix S = X'X, and the singular values of X are the square root of the eigen
values of S. We can derive a similar expression for the Gram matrix G = XX" =UX?U", from
which we see that the eigenvectors of the Gram matrix are the left singular vectors of X. This
demonstrates that in order to perform principal components analysis it is sufficient to perform
an eigen decomposition of the scatter or Gram matrices, rather than a full singular value
decomposition.

(1.9 1 0 (1 0 0

g g 22 010
1 00 1 010

00 01 0 0 1
- 1 0 2Z 01 3% |9 1 X 1

12 3 2 1 1 0
0 0 1 0 0 0 1

1 0 1 1 I

L0 2 2 3 01 1

The matrix on the left expresses people’s preferences for films (in columns). The right hand
side decomposes or factorises this into film genres: the first matrix quantifies people’s
appreciation of genres; the last matrix associates films with genres; and the middle matrix
tells us the weight of each genre in determining preferences.

10. Bagging and random forests

Bagging, short for ‘bootstrap aggregating’, is a simple but highly effective ensemble method
that creates diverse models on different random samples of the original data set. These
samples are taken uniformly with replacement and are known as bootstrap samples. Because
samples are taken with replacement the bootstrap sample will in general contain duplicates,
and hence some of the original data points will be missing even if the bootstrap sample is of
the same size as the original data set.

Algorithm 11.1 gives the basic bagging algorithm, which returns the ensemble as a set
of models. We can choose to combine the predictions from the different models by voting —
the class predicted by the majority of models wins — or by averaging, which is more
appropriate if the base classifiers output scores or probabilities.
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Algorithm 11.1: Bagging(D, T,</) — train an ensemble of models from bootstrap
samples.

Input :dataset D; ensemble size T; learning algorithm <.
Output : ensemble of models whose predictions are to be combined by voting
or averaging.
1 fort=1to T do
build a bootstrap sample D; from D by sampling | D| data points with

e

replacement;
3 run </ on D, to produce a model M;;
4 end
5 return {M;|1<t<T}

Bagging is particularly useful in combination with tree models, which are quite sensitive to
variations in the training data. When applied to tree models, bagging is often combined with
another idea: to build each tree from a different random subset of the features, a process also
referred to as subspace sampling. This encourages the diversity in the ensemble even more,
and has the additional advantage that the training time of each tree is reduced. The resulting
ensemble method is called random forests, and the algorithm is given in Algorithm 11.2.

Algorithm 11.2: RandomForest(D, T, d) — train an ensemble of tree models from
bootstrap samples and random subspaces.

Input :data set D; ensemble size T; subspace dimension d.
Output :ensemble of tree models whose predictions are to be combined by
voting or averaging.
1 fort=1to T do
2 build a bootstrap sample D; from D by sampling |D| data points with
replacement;
3 select d features at random and reduce dimensionality of D; accordingly;
4 train a tree model M; on D; without pruning;
5 end
return {M;|1<t< T}

=2

11. Boosting

Boosting is an ensemble technique that is superficially similar to bagging, but uses a more
sophisticated technique than bootstrap sampling to create diverse training sets. The basic idea
is simple and appealing. Suppose we train a linear classifier on a data set and find that its
training error rate is _. We want to add another classifier to the ensemble that does better on
the misclassifications of the first classifier. One way to do that is to duplicate the
misclassified instances: if our base model is the basic linear classifier, this will shift the class
means towards the duplicated instances. A better way to achieve the same thing is to give the
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misclassified instances a higher weight, and to modify the classifier to take these weights into
account (e.g., the basic linear classifier
can calculate the class means as a weighted average).

Algorithm 11.3: Boosting(D, T, /) — train an ensemble of binary classifiers from
reweighted training sets.

Input :data set D; ensemble size T’; learning algorithm <.

Output :weighted ensemble of models.
1 wy;—1/|D|forall x;e D; /1 start with uniform weights
2 fort=1to T do

3 run < on D with weights w;; to produce a model M,;

4 calculate weighted error ¢;;

5 ife; = 1/2 then

6 set T — t—1 and break

7 end

8 a — % In I;C’ ; /1 confidence for this model
9 Wits1)i — gT',' for misclassified instances x;€ D ; /I increase weight
10 Wits1)] ‘—% for correctly classified instances x; € D; // decrease weight
1 end

return M(x)= Y|, a;M;(x)

e
e

12. Boosted rule learning

An interesting variant of boosting arises when our base models are partial classifiers that
sometimes abstain from making a prediction. For example, suppose that our base classifiers
are conjunctive rules whose head is fixed to predicting the positive class. An individual rule
therefore either predicts the positive class for those instances it covers, or otherwise abstains
from making a prediction. We can use boosting to learn an ensemble of such rules that takes a
weighted vote among its members.
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We need to make some small adjustments to the boosting equations, as follows.
Notice that €; is the weighted error of the 7-th base classifier. Since our rules always
predict positive for covered instances, these errors only concern covered negatives,
which we will indicate by €, . Similarly, we indicate the weighted sum of covered pos-
itives as €7, which will play the role of 1-¢,. However, with abstaining rules there is
a third component, indicated as €, which is the weighted sum of instances which the
rule doesn't cover (€7 +€? +¢, =1). We then have

Zi =€) +€; expla;) +€; exp(—ay)

The value of a; which maximises this is

& &

1. € €
a;==In-L=Iny/ L
2 € €

(11.4)
t

which gives

2
Zr=€2+2,/e%e5 =1—€P €5 +2 ef‘e,:l—(\/e;‘—\/et'

This means that in each boosting round we construct a rule that maximises |\ [€7 —\/€; | ;
and set its confidence factor to a; as in Equation 11.4. In order to obtain a prediction
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Dimensionality Reduction

1. Principal Component Analysis:

It is a statistical procedure that uses an orthogonal transformation which converts a set
of correlated variables to a set of uncorrelated variables. PCA is a most widely used tool in
exploratory data analysis and in machine learning for predictive models. Moreover, PCA is
an unsupervised statistical technique used to examine the interrelations among a set of
variables. It is also known as a general factor analysis where regression determines a line of
best fit.

1.1 Steps Involved in PCA
1. Standardize the data. (with mean =0 and variance = 1)
2. Compute the Covariance matrix of dimensions.

3. Obtain the Eigenvectors and Eigenvalues from the covariance matrix (we can also use
correlation matrix or even Single value decomposition, however in this post will focus
on covariance matrix).

4. Sort eigen values in descending order and choose the top k Eigenvectors that
correspond to the k largest eigen values (k will become the number of dimensions of
the new feature subspace k<d, d is the number of original dimensions).

5. Construct the projection matrix W from the selected k Eigenvectors.

6. Transform the original data set X via W to obtain the new k-dimensional feature
subspace Y.

1.2 Implementation and Demonstration:

1. Standardization

When there are different scales used for the measurement of the values of the
features, then it is advisable to do the standardization to bring all the feature spaces
with mean = 0 and variance = 1.

The reason why standardization is very much needed before performing PCA
is that PCA is very sensitive to variances. Meaning, if there are large differences
between the scales (ranges) of the features, then those with larger scales will dominate
over those with the small scales. So, transforming the data to the same scales will
prevent this problem. That is where we use standardization to bring the features with
mean value 0 and variance 1.

x; —meanof x
std Deviation of x

Standardized value of x; =

2. Eigen decomposition — Computing Eigenvectors and Eigenvalues

The eigenvectors and eigen values of a covariance (or correlation) matrix represent
the “core” of a PCA:

%
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« The Eigenvectors (principal components) determine the directions of the new feature
space, and the eigenvalues determine their magnitude.

- In other words, the eigenvalues explain the variance of the data along the new feature
axes. It means the corresponding eigenvalue tells us that how much variance is
included in that new transformed feature.

« To get eigenvalues and Eigenvectors we need to compute the covariance matrix. So in
the next step let’s compute it.

3. Selecting The Principal Components

« The typical goal of a PCA is to reduce the dimensionality of the original feature space
by projecting it onto a smaller subspace, where the eigenvectors will form the axes.

« However, the eigenvectors only define the directions of the new axis, since they have
all the same unit length 1.

4. Construct the projection matrix W from the selected k eigenvectors

 Projection matrix will be used to transform the Iris data onto the new feature subspace
or we say newly transformed data set with reduced dimensions.

- It is a matrix of our concatenated top k Eigenvectors.
2. Artificial Neural Networks:

“Artificial Neural Networks or ANN is an information processing paradigm that is inspired
by the way the biological nervous system such as brain process information. It is composed
of large number of highly interconnected processing elements(neurons) working in unison to
solve a specific problem.”

2.1 NEURAL NETWORK REPRESENTATIONS

Artificial Neural Network is computing system inspired by biological neural network that
constitute animal brain. Such systems “learn” to perform tasks by considering examples,
generally without being programmed with any task-specific rules.

The Neural Network is constructed from 3 type of layers:
1. Input layer — initial data for the neural network.

2. Hidden layers — intermediate layer between input and output layer and place where
all the computation is done.

3. Output layer — produce the result for given inputs.
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There are 3 yellow circles on the image above. They represent the input layer and usually are
noted as vector X. There are 4 blue and 4 green circles that represent the hidden layers. These
circles represent the “activation” nodes and usually are noted as W or 6. The red circle is the
output layer or the predicted value (or values in case of multiple output classes/types).

Each node is connected with each node from the next layer and each connection
(black arrow) has particular weight. Weight can be seen as impact that that node has on the
node from the next layer. So if we take a look on one node it would look like this

inputs

weighted
unit step function

2.2APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING:

ANN learning is well-suited to problems in which the training data corresponds to noisy,

complex sensor data, such as inputs from cameras and microphones. It is also applicable to

problems for which more symbolic representations are often used, such as the decision tree

learning. It is appropriate for problems with the following characteristics:

% Instances are represented by many attribute-value pairs.

The target function to be learned is defined over instances that can be described by a
vector of predefined features, such as the pixel values in the ALVINN example.
These input attributes may be highly correlated or independent of one another. Input
values can be any real values.

% The target function output may be discrete-valued, real-valued, or a vector of
several real- or discrete-valued attributes.
For example, in the ALVINN system the output is a vector of 30 attributes, each
corresponding to a recommendation regarding the steering direction. The value of
each output is some real number between 0 and 1, which in this case corresponds to
the confidence in predicting the corresponding steering direction. We can also train a
single network to output both the steering command and suggested acceleration,
simply by concatenating the vectors that encode these two output predictions.

% The training examples may contain errors.
ANN learning methods are quite robust to noise in the training data.

< Long training times are acceptable.
Network training algorithms typically require longer training times than, say, decision
tree learning algorithms. Training times can range from a few seconds to many hours,
depending on factors such as the number of weights in the network, the number of
training examples considered, and the settings of various learning algorithm
parameters.

% Fast evaluation of the learned target function may be required.
Although ANN learning times are relatively long, evaluating the learned network, in
order to apply it to a subsequent instance, is typically very fast. For example,
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ALVINN applies its neural network several times per second to continually update its
steering command as the vehicle drives forward.

% The ability of humans to understand the learned target function is not important.
The weights learned by neural networks are often difficult for humans to interpret.
Learned neural networks are less easily communicated to humans than learned rules.

2.3 Multi Layer ANN:

A fully connected multi-layer neural network is called a Multilayer Perceptron (MLP).

Input layer with 3 Hidden layer with 4

input units plus hidden units plus bias

bias unit (m = 3+1) unit (d = 4+1) Output layer
with 3 output

units (t = 3)

connects |** non-bias neuron in the 2™
layer (hidden layer h) to the 3™ unit in
Number of layers: L = 3 the 3" layer (output layer out)

It has 3 layers including one hidden layer. If it has more than 1 hidden layer, it is called a
deep ANN. An MLP is a typical example of a feedforward artificial neural network. In this
figure, the i™ activation unit in the I" layer is denoted as ai’. The number of layers and the
number of neurons are referred to as hyperparameters of a neural network, and these need
tuning. Cross-validation techniques must be used to find ideal values for these. The weight
adjustment training is done via backpropagation. Deeper neural networks are better at
processing data. However, deeper layers can lead to vanishing gradient problem. Special
algorithms are required to solve this issue.

Notations

In the representation below:
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B (in)- B B
a, 1

(in) (in)
in a X
) s L= t

« a;{M refers to the ith value in the input layer

h

. a,(h) refers to the it unit in the hidden layer

th

o a0 refers to the it unit in the output layer

. ao(’n) is simply the bias unit and is equal to 1; it will have the corresponding weight wg

* The weight coefficient from layer | to layer I+1 is represented by wk:j(')

2.4Backpropagation Algorithm:

Back-propagation is the essence of neural net training. It is the method of fine-tuning the
weights of a neural net based on the error rate obtained in the previous epoch (i.e., iteration).
Proper tuning of the weights allows you to reduce error rates and to make the model reliable
by increasing its generalization.

Backpropagation is a short form for "backward propagation of errors.” It is a standard
method of training artificial neural networks. This method helps to calculate the gradient of a
loss function with respects to all the weights in the network.

How Backpropagation Works: Simple Algorithm

Consider the following diagram
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Hidden layer(s)

lnPTJt Output layer
- e%e
\" vy
e .
A fa, oy,
e Backprop output [ayer
How Backpropagation Works

1. Inputs X, arrive through the preconnected path

2. Input is modeled using real weights W. The weights are usually randomly selected.

3. Calculate the output for every neuron from the input layer, to the hidden layers, to the
output layer.

4. Calculate the error in the outputs
Errors= Actual Output — Desired Output

5. Travel back from the output layer to the hidden layer to adjust the weights such that
the error is decreased.

Keep repeating the process until the desired output is achieved
Advantages of Backpropagation are:
« Backpropagation is fast, simple and easy to program
« It has no parameters to tune apart from the numbers of input
« It isa flexible method as it does not require prior knowledge about the network
- It is a standard method that generally works well

o It does not need any special mention of the features of the function to be learned.
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IV B.Tech Il Semester Regular Examinations, September - 2020
MACHINE LEARNING
(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours Max. Marks: 70
Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A

Answer any FOUR questions from Part-B
*kkkk

PART-A (14 Marks)

a) Define binary Classification. [2]
b) Describe the performance of Multi-class classifier. [3]
c) What is a decision tree? [2]
d) What is Minkowski distance? [2]
e) What is discriminative probabilistic model? [2]
f)  What is the representational power of perceptron? [3]

PART-B (4x14 = 56 Marks)

a) What are the different types of a Machine Learning models? [7]
b) Explain about Feature Construction and Transformation. [7]
a) How to handle more than two classes in beyond Binary Classification. [7]

b) Explain the following
i. One-versus-one voting.
ii. Loss based decoding.

iii. Coverage counts as scores. [7]
a) Explain Rule set for Ranking and Probability estimation. [7]
b) Discuss in detail about Learning Ordered Rule Lists. [7]
a) Discuss in detail about Soft Margin SVM. [7]
b) Describe Nearest-Neighbor Classification in detail. [7]
a) Write detailed note on Feature Transformations. [7]
b) Explain about normal distribution with the help of sample data. [7]
a) Explain about Principle Component Analysis in detail. [7]
b) Discuss in detail about representation of Neural Networks. [7]
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IV B.Tech Il Semester Regular Examinations, September - 2020
MACHINE LEARNING
(Common to Computer Science and Engineering and Information Technology)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A

Answer any FOUR questions from Part-B
*kkkk

PART-A (14 Marks)

a) What is Scoring Classifier?

b) What is unsupervised learning?

c) Define Feature Tree.

d) What is Support Vector Regression?
e) Write ashort note on random forests.
f)  Write a short note on PCA?

PART-B (4x14 = 56 Marks)

a) Explain in detail about geometric model.
b) Explain the two uses of features in machine learning.

a) Explain the following

i.  most general consistent hypothesis.

ii. closed concepts in path through the hypothesis
b) Write in detailed note on Regression.

a) Explain in detail about ranking and probability estimation tree.
b) Discuss about First-Order rule learning in detail.

a) Explain about the Least-Squares method?
b) Discuss in detail about Distance Based Clustering. Write its importance in
machine learning.

a) Write about Probabilistic models for categorical data.
b) Discuss about the Normal Distribution and its Geometric interpretations?

a) Explain how dimensionality reduction takes place using PCA.
b) Describe in detail about neural networks role in machine learning.
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IV B.Tech Il Semester Regular Examinations, September - 2020
MACHINE LEARNING
(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours Max. Marks: 70
Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A

Answer any FOUR questions from Part-B
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PART-A (14 Marks)

a) Write short notes on Geometric model. [3]
b) What are the Descriptive models? [2]
c) What is Ranking? [2]
d) What is Univariate Linear Regression? [2]
e) What is Cumulative Probability Distribution? [2]
f)  List the applications of Neural Networks in Machine Learning. [3]

PART-B (4x14 = 56 Marks)

a) List the problems that can be solved with machine learning. [7]
b) Explain about binary classification and related tasks. [7]

a) Find least general conjunctive generalization of two conjunctions, employing

internal disjunction. [7]
b) How to learn a conjunction of horn clauses from membership, equivalence and

also explain algorithm for it? [7]
a) Distinguish between regression and clustering trees. [7]
b) Explain in detail about descriptive rule learning. [7]
a) Explain about K-means algorithm with an example. [7]
b) With an example explain Hierarchical clustering? [7]
a) Explain the probabilistic models with hidden variables. [7]
b) What is Ensemble modeling? Discuss about Bagging and Boosting. [7]

a) List and explain in detail about appropriate problems for Neural Network

learning. [7]
b) Explain in detail about multilayer neural networks and back propagation
algorithm. [7]
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MACHINE LEARNING
(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours Max. Marks: 70
Question paper consists of Part-A and Part-B
Answer ALL sub questions from Part-A
Answer any FOUR questions from Part-B
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PART-A (14 Marks)

a) Compare Supervised and unsupervised learning. [2]
b) What is descriptive learning? [2]
c) What are the functions used in Decision Tree? [2]
d) Write a short note on Distance based clustering. [3]
e) What is boosting? [2]
f)  What is dimensionality reduction? [3]

PART-B (4x14 = 56 Marks)

a) Explain about Grouping and Grading models. [7]
b) Describe in detail about the role of features in Machine Learning. [7]
a) Discuss about beyond Conjunctive concepts using first-order logic. [7]
b) Write in detailed note on multi class Probabilities from Coverage counts. [7]
a) Explain in detail about Decision Tree with an example. [7]
b) Write in detailed note on Regression Trees. [7]
a) How to obtain the probabilities from Linear Classifiers? Explain. [7]
b) Explain in detail about Kernel Perceptron. [7]
a) Write a note on Feature construction and selection. [7]
b) Describe about Probabilistic models used for categorical data. [7]
a) Explain in detail about multilayer neural network? [7]
b) Explain how dimensionality is reduced using PCA. [7]
lofl

e WWWL mainar esul ts. co. i n



	MACHINE LEARNING
	A) Machine Learning
	I- THE PROBLEMS THAT CAN BE SOLVED WITH MACHINE LEARNING:
	1. MANUAL DATA ENTRY
	2. DETECTING SPAM
	3. PRODUCT RECOMMENDATION
	4. MEDICAL DIAGNOSIS
	5. CUSTOMER SEGMENTATION AND LIFETIME VALUE PREDICTION
	6. FINANCIAL ANALYSIS
	7. PREDICTIVE MAINTENANCE
	8. IMAGE RECOGNITION ( COMPUTER VISION)
	II- MODELS: THE OUTPUT OF MACHINE LEARNING, FEATURES, THE WORKHORSES OF
	MODELS: THE OUTPUT OF MACHINE LEARNING
	1. Geometric models
	2. Probabilistic models
	A complete feature tree
	Mapping machine learning models:
	Mapping machine learning model diagram
	THE MANY USES OF FEATURES:

	Feature construction and transformation

	B) BINARY CLASSIFICATION AND RELATED TASKS
	 Scoring and ranking
	 Class probability estimation
	1) CLASSIFICATION
	Visualising classification performance:
	 Assessing and visualising ranking performance:
	Assessing class probability estimates:
	UNIT- II
	Beyond binary classification Handling more than two classes
	1. Transformation to binary
	One-vs.-rest
	One-vs.-one
	2. Multi-class scores and probabilities
	Neural networks
	k-nearest neighbours
	Naive Bayes
	Decision trees
	Support vector machines
	3. Hierarchical classification
	Regression
	Types of Regression
	1. Simple Linear Regression
	2. Polynomial Regression
	3. Support Vector Regression
	4. Decision Tree Regression
	5. Random Forest Regression
	Unsupervised and descriptive learning
	Types of Unsupervised Learning
	Exclusive (partitioning)
	Agglomerative
	Overlapping
	Chapter-4 Concept learning
	The hypothesis space
	General to Specific
	<true, true, false, true> ⵁ <true, true, false, false> = <true, true, false, ?>
	?>
	6 end
	UNIT- III

	a) Decision trees
	b) Ranking and probability estimation trees
	(ii)Clustering Tree
	a) Learning ordered rule lists
	i)Rule Learning for subgroup discovery
	Rule-2
	d) First-order rule learning
	Learning Propositional versus First-Order Rules:
	1.1 Characteristics of Linear Model:
	2.1 Univariate Analysis:
	2.2 Multivariate Regression:
	2.3 Bivariate linear regression in matrix notation:
	2.4 Regularized Expression:
	Using least-squares regression for classification


	3. The Perceptron:
	7 then
	10 end
	4. Support vector machines:

	5. Soft margin SVM
	6. Obtaining probabilities from linear classifiers:
	5.1 Example: Logistic calibration of a linear classifier:

	7. Going beyond linearity with kernel methods:
	1. Introduction:
	2. The normal distribution and its geometric interpretations:
	Points to Remember:


	2 www.jntufastupdates.com
	3 www.jntufastupdates.com
	Case Study2: (least-squares solution to a linear regression problem):

	4 www.jntufastupdates.com
	3. Probabilistic models for categorical data:
	Using a naive Bayes model for classification:

	5 www.jntufastupdates.com
	6 www.jntufastupdates.com
	4. Training a naive Bayes model:
	Example:

	7 www.jntufastupdates.com
	8 www.jntufastupdates.com
	5. Discriminative learning by optimising conditional likelihood:

	9 www.jntufastupdates.com
	6. Probabilistic models with hidden variables:

	10 www.jntufastupdates.com
	11 www.jntufastupdates.com
	6.3. Compression-based models
	Minimum description length principle:

	12 www.jntufastupdates.com
	7.1. Kinds of feature

	13 www.jntufastupdates.com
	14 www.jntufastupdates.com
	8. Feature transformations

	15 www.jntufastupdates.com
	16 www.jntufastupdates.com
	17 www.jntufastupdates.com
	18 www.jntufastupdates.com
	9. Feature construction and selection

	19 www.jntufastupdates.com
	10. Bagging and random forests

	20 www.jntufastupdates.com
	11. Boosting

	21 www.jntufastupdates.com
	22 www.jntufastupdates.com
	23 www.jntufastupdates.com
	1.1 Steps Involved in PCA
	1. Standardization
	2. Eigen decomposition — Computing Eigenvectors and Eigenvalues

	1 www.jntufastupdates.com
	3. Selecting The Principal Components
	4. Construct the projection matrix W from the selected k eigenvectors
	2. Artificial Neural Networks:
	2.1 NEURAL NETWORK REPRESENTATIONS

	2 www.jntufastupdates.com (1)
	2.2 APPROPRIATE PROBLEMS FOR NEURAL NETWORK LEARNING:
	❖ Instances are represented by many attribute-value pairs.
	❖ The target function output may be discrete-valued, real-valued, or a vector of several real- or discrete-valued attributes.
	❖ The training examples may contain errors.
	❖ Long training times are acceptable.
	❖ Fast evaluation of the learned target function may be required.


	3 www.jntufastupdates.com (1)
	❖ The ability of humans to understand the learned target function is not important.

	4 www.jntufastupdates.com (1)
	2.4 Backpropagation Algorithm:
	How Backpropagation Works: Simple Algorithm

	5 www.jntufastupdates.com (1)
	Advantages of Backpropagation are:

	6 www.jntufastupdates.com (1)


